精英家教网 > 高中数学 > 题目详情

【题目】设点为圆上的动点,点轴上的投影为,动点满足,动点的轨迹为.

(1)求的方程;

(2)设轴正半轴的交点为,过点的直线的斜率为交于另一点为.若以点为圆心,以线段长为半径的圆与有4个公共点,求的取值范围.

【答案】(1);(2)

【解析】试题分析:(1)利用相关点法求出的方程;(2),设则点的轨迹方程为

,得,()(*)依题意得,(*)式关于的方程在有两个不同的实数解,利用二次函数有关知识即可求出的取值范围.

试题解析:

(1)设点,则

因为,所以,所以,解得

由于点在圆上,所以

所以点的轨迹的方程为.

(2)由(1)知,的方程为,因为直线.

,因此

则点的轨迹方程为

,得,()(*)

依题意得,(*)式关于的方程在有两个不同的实数解,

因为函数的对称轴为

要使函数的图象在轴有两个不同的交点,

整理得:,即

所以.

解得

所以的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程是 (为参数),以原点为极点, 轴正半轴为极轴,建立极坐标系,直线的极坐标方程为.

(Ⅰ)求曲线的普通方程与直线的直角坐标方程;

(Ⅱ)已知直线与曲线交于 两点,与轴交于点,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知椭圆的离心率为 分别为椭圆的上顶点和右焦点, 的面积为,直线与椭圆交于另一个点,线段的中点为.

(1)求直线的斜率;

(2)设平行于的直线与椭圆交于不同的两点 ,且与直线交于点,求证:存在常数,使得.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,椭圆的中心为原点O,长轴在x轴上,离心率,过左焦点F1x轴的垂线交椭圆于A两点

Ⅰ)求该椭圆的标准方程;

Ⅱ)取垂直于x轴的直线与椭圆相交于不同的两点P,过P作圆心为Q的圆,使椭圆上的其余点均在圆Q外.若,求圆Q的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1111日有2000名网购者在某购物网站进行网购消费(金额不超过1000元),其中女性1100名,男性900名.该购物网站为优化营销策略,根据性别采用分层抽样的方法从这2000名网购者中抽取200名进行分析,如表.(消费金额单位:元)

(1)计算的值在抽出的200名且消费金额在的网购者中随机抽出2名发放网购红包,求选出的2人均为女性的概率;

(2)若消费金额不低于600元的网购者为“网购达人”,低于600元的网购者为“非网购达人”,根据以上数据列列联表并回答能否有的把握认为“是否为网购达人与性别有关?”附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求证:函数有唯一零点;

(2)若对任意恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学举行了一次环保知识竞赛活动. 为了了解本次竞赛学生成绩情况,从中抽取了部分学生的分数得分取正整数,满分为100分作为样本样本容量为进行统计. 按照[50,60,[60,70,[70,80,[80,90,[90,100]的分组作出频率分布直方图,并作出样本分数的茎叶图图中仅列出了得分在[50,60,[90,100]的数据.

1求样本容量和频率分布直方图中的的值;

2在选取的样本中,从竞赛成绩是80分以上含80分的同学中随机抽取3名同学到市政广场参加环保知识宣传的志愿者活动,设表示所抽取的3名同学中得分在[80,90的学生人数,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为提高黔东南州的整体旅游服务质量,州旅游局举办了黔东南州旅游知识竞赛,参赛单位为本州内各旅游协会,参赛选手为持证导游.现有来自甲旅游协会的导游3名,其中高级导游2名;乙旅游协会的导游5名,其中高级导游3名.从这8名导游中随机选择4人 参加比赛.

(Ⅰ)设为事件“选出的4人中恰有2名高级导游,且这2名高级导游来自同一个旅游协会”,求事件发生的概率.

(Ⅱ)设为选出的4人中高级导游的人数,求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系.

(1)在极坐标系下,设曲线与射线和射线分别交于两点,求的面积;

(2)在直角坐标系下,直线的参数方程为为参数),直线与曲线相交于两点,求的值.

查看答案和解析>>

同步练习册答案