精英家教网 > 高中数学 > 题目详情

【题目】如图,椭圆的中心为原点O,长轴在x轴上,离心率,过左焦点F1x轴的垂线交椭圆于A两点

Ⅰ)求该椭圆的标准方程;

Ⅱ)取垂直于x轴的直线与椭圆相交于不同的两点P,过P作圆心为Q的圆,使椭圆上的其余点均在圆Q外.若,求圆Q的标准方程.

【答案】(Ⅰ)(Ⅱ).

【解析】试题分析:(1)先将点坐标代入椭圆方程,再与离心率联立方程组解得a,b,(2)根据题意得点P是椭圆上到点的距离最小的点,因此先建立椭圆上任意一点到Q距离的函数关系式,根据二次函数性质确定最小值取法得,再根据得P点纵坐标,最后根据P点在椭圆上解得,即得圆Q的标准方程.

试题解析:Ⅰ)由题意知,在椭圆上,

,从而

,得,从而

故该椭圆的标准方程为

Ⅱ)由椭圆的对称性,可设

又设是椭圆上任意一点,则

,由题意知,点P是椭圆上到点Q的距离最小的点,

因此,上式当时取最小值.

又因为∴上式当时取最小值,

从而,且.因为,且

,即

由椭圆方程及,得

解得,从而

故这样的圆有两个,其标准方程分别为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】棱台的三视图与直观图如图所示.

(1)求证:平面平面

(2)在线段上是否存在一点,使与平面所成的角的正弦值为?若存在,指出点的位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有甲、乙两个桔柚(球形水果)种植基地,已知所有采摘的桔柚的直径都在范围内(单位:毫米,以下同),按规定直径在内为优质品,现从甲、乙两基地所采摘的桔柚中各随机抽取500个,测量这些桔柚的直径,所得数据整理如下:

(1)根据以上统计数据完成下面列联表,并回答是否有以上的把握认为

“桔柚直径与所在基地有关”?

(2)求优质品率较高的基地的500个桔柚直径的样本平均数(同一组数据用该区间的中点值作代表):

(3)经计算,甲基地的500个桔柚直径的样本方差,乙基地的500个桔柚直径的样本方差,,并且可认为优质品率较高的基地采摘的桔柚直径服从正态分布,其中近似为样本平均数近似为样本方差.由优质品率较高的种植基地的抽样数据,估计该基地采摘的桔柚中,直径不低于86.78亳米的桔柚在总体中所占的比例.

附:.

,则.

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,点在倾斜角为的直线上,以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的方程为.

(1)写出的参数方程及的直角坐标方程;

(2)设相交于两点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线在第一象限内的点到焦点的距离为

1,过点, 的直线与抛物线相交于另一点,求的值

2)若直线与抛物线相交于两点,与圆相交于两点, 为坐标原点, ,试问:是否存在实数,使得的长为定值?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】依据某地某条河流8月份的水文观测点的历史统计数据所绘制的频率分布直方图如图(甲)所示;依据当地的地质构造,得到水位与灾害等级的频率分布条形图如图(乙)所示.

试估计该河流在8月份水位的中位数;

1)以此频率作为概率,试估计该河流在8月份发生1级灾害的概率;

2)该河流域某企业,在8月份,若没受12级灾害影响,利润为500万元;若受1级灾害影响,则亏损100万元;若受2级灾害影响则亏损1000万元.

现此企业有如下三种应对方案:

方案

防控等级

费用(单位:万元)

方案一

无措施

0

方案二

防控1级灾害

40

方案三

防控2级灾害

100

试问,如仅从利润考虑,该企业应选择这三种方案中的哪种方案?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设点为圆上的动点,点轴上的投影为,动点满足,动点的轨迹为.

(1)求的方程;

(2)设轴正半轴的交点为,过点的直线的斜率为交于另一点为.若以点为圆心,以线段长为半径的圆与有4个公共点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-5:不等式选讲设函数

(1)当时,解不等式:

(2)若关于x的不等式fx)≤4的解集为[﹣1,7],且两正数st满足,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆,若椭圆,则称椭圆与椭圆 “相似”.

(1)求经过点,且与椭圆 “相似”的椭圆的方程;

(2)若,椭圆的离心率为在椭圆上,过的直线交椭圆两点,且.

①若的坐标为,且,求直线的方程;

②若直线的斜率之积为,求实数的值.

查看答案和解析>>

同步练习册答案