【题目】如图,椭圆的中心为原点O,长轴在x轴上,离心率,过左焦点F1作x轴的垂线交椭圆于A,两点.
(Ⅰ)求该椭圆的标准方程;
(Ⅱ)取垂直于x轴的直线与椭圆相交于不同的两点P,,过P、作圆心为Q的圆,使椭圆上的其余点均在圆Q外.若,求圆Q的标准方程.
【答案】(Ⅰ);(Ⅱ).
【解析】试题分析:(1)先将点坐标代入椭圆方程,再与离心率联立方程组解得a,b,(2)根据题意得点P是椭圆上到点的距离最小的点,因此先建立椭圆上任意一点到Q距离的函数关系式,根据二次函数性质确定最小值取法得,再根据得P点纵坐标,最后根据P点在椭圆上解得,即得圆Q的标准方程.
试题解析:(Ⅰ)由题意知,在椭圆上,
则,从而
由,得,从而.
故该椭圆的标准方程为
(Ⅱ)由椭圆的对称性,可设.
又设是椭圆上任意一点,则
设,由题意知,点P是椭圆上到点Q的距离最小的点,
因此,上式当时取最小值.
又因为,∴上式当时取最小值,
从而,且.因为,且,
∴,即
由椭圆方程及,得,
解得,从而.
故这样的圆有两个,其标准方程分别为
科目:高中数学 来源: 题型:
【题目】棱台的三视图与直观图如图所示.
(1)求证:平面平面;
(2)在线段上是否存在一点,使与平面所成的角的正弦值为?若存在,指出点的位置;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有甲、乙两个桔柚(球形水果)种植基地,已知所有采摘的桔柚的直径都在范围内(单位:毫米,以下同),按规定直径在内为优质品,现从甲、乙两基地所采摘的桔柚中各随机抽取500个,测量这些桔柚的直径,所得数据整理如下:
(1)根据以上统计数据完成下面列联表,并回答是否有以上的把握认为
“桔柚直径与所在基地有关”?
(2)求优质品率较高的基地的500个桔柚直径的样本平均数(同一组数据用该区间的中点值作代表):
(3)经计算,甲基地的500个桔柚直径的样本方差,乙基地的500个桔柚直径的样本方差,,并且可认为优质品率较高的基地采摘的桔柚直径服从正态分布,其中近似为样本平均数,近似为样本方差.由优质品率较高的种植基地的抽样数据,估计该基地采摘的桔柚中,直径不低于86.78亳米的桔柚在总体中所占的比例.
附:,.
若,则.
,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,点在倾斜角为的直线上,以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的方程为.
(1)写出的参数方程及的直角坐标方程;
(2)设与相交于两点,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线在第一象限内的点到焦点的距离为.
(1)若,过点, 的直线与抛物线相交于另一点,求的值;
(2)若直线与抛物线相交于两点,与圆相交于两点, 为坐标原点, ,试问:是否存在实数,使得的长为定值?若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】依据某地某条河流8月份的水文观测点的历史统计数据所绘制的频率分布直方图如图(甲)所示;依据当地的地质构造,得到水位与灾害等级的频率分布条形图如图(乙)所示.
试估计该河流在8月份水位的中位数;
(1)以此频率作为概率,试估计该河流在8月份发生1级灾害的概率;
(2)该河流域某企业,在8月份,若没受1、2级灾害影响,利润为500万元;若受1级灾害影响,则亏损100万元;若受2级灾害影响则亏损1000万元.
现此企业有如下三种应对方案:
方案 | 防控等级 | 费用(单位:万元) |
方案一 | 无措施 | 0 |
方案二 | 防控1级灾害 | 40 |
方案三 | 防控2级灾害 | 100 |
试问,如仅从利润考虑,该企业应选择这三种方案中的哪种方案?说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设点为圆上的动点,点在轴上的投影为,动点满足,动点的轨迹为.
(1)求的方程;
(2)设与轴正半轴的交点为,过点的直线的斜率为,与交于另一点为.若以点为圆心,以线段长为半径的圆与有4个公共点,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:,若椭圆:,则称椭圆与椭圆 “相似”.
(1)求经过点,且与椭圆: “相似”的椭圆的方程;
(2)若,椭圆的离心率为,在椭圆上,过的直线交椭圆于,两点,且.
①若的坐标为,且,求直线的方程;
②若直线,的斜率之积为,求实数的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com