【题目】已知椭圆:,若椭圆:,则称椭圆与椭圆 “相似”.
(1)求经过点,且与椭圆: “相似”的椭圆的方程;
(2)若,椭圆的离心率为,在椭圆上,过的直线交椭圆于,两点,且.
①若的坐标为,且,求直线的方程;
②若直线,的斜率之积为,求实数的值.
【答案】(1);(2)①,②.
【解析】试题分析:
⑴设椭圆的方程为,结合椭圆过点可得椭圆的方程为.
⑵由题意设椭圆,椭圆,设,
①方法一:联立直线方程与椭圆方程可得,则,,代入椭圆可得,解得,直线的方程为.
方法二:由题意得,则椭圆,,
设,则,联立椭圆方程可得, 则直线的方程为.
②方法一: 由题意得,结合,则,可得:,
整理计算得到关于的方程:,.
方法二:不妨设点在第一象限,直线,与椭圆方程联立可得,则,直线的斜率之积为,计算可得,则,结合,可得,即,.
试题解析:
⑴设椭圆的方程为,代入点得,
所以椭圆的方程为.
⑵因为椭圆的离心率为,故,所以椭圆,
又椭圆与椭圆“相似”,且,所以椭圆,
设,
①方法一:由题意得,所以椭圆,将直线,
代入椭圆得,
解得,故,
所以,
又,即为中点,所以,
代入椭圆得,
即,即,所以,
所以直线的方程为.
方法二:由题意得,所以椭圆,,
设,则,
代入椭圆得,解得,故,
所以,
所以直线的方程为.
②方法一: 由题意得,
,即,
,则,解得,
所以,
则,
,
所以,即,所以.
方法二:不妨设点在第一象限,设直线,代入椭圆,
解得,则,
直线的斜率之积为,则直线,代入椭圆,
解得,则,
,则,解得,
所以,
则,
,
所以,
即,即,所以.
科目:高中数学 来源: 题型:
【题目】如图,椭圆的中心为原点O,长轴在x轴上,离心率,过左焦点F1作x轴的垂线交椭圆于A,两点.
(Ⅰ)求该椭圆的标准方程;
(Ⅱ)取垂直于x轴的直线与椭圆相交于不同的两点P,,过P、作圆心为Q的圆,使椭圆上的其余点均在圆Q外.若,求圆Q的标准方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为提高黔东南州的整体旅游服务质量,州旅游局举办了黔东南州旅游知识竞赛,参赛单位为本州内各旅游协会,参赛选手为持证导游.现有来自甲旅游协会的导游3名,其中高级导游2名;乙旅游协会的导游5名,其中高级导游3名.从这8名导游中随机选择4人 参加比赛.
(Ⅰ)设为事件“选出的4人中恰有2名高级导游,且这2名高级导游来自同一个旅游协会”,求事件发生的概率.
(Ⅱ)设为选出的4人中高级导游的人数,求随机变量的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】二进制规定:每个二进制数由若干个0、1组成,且最高位数字必须为1.若在二进制中,是所有位二进制数构成的集合,对于,,表示和对应位置上数字不同的位置个数.例如当,时,当,时.
(1)令,求所有满足,且的的个数;
(2)给定,对于集合中的所有,求的和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系.
(1)在极坐标系下,设曲线与射线和射线分别交于,两点,求的面积;
(2)在直角坐标系下,直线的参数方程为(为参数),直线与曲线相交于,两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】直线a与平面所成角的为30o,直线b在平面内,且与b异面,若直线a与直线b所成的角为,则( )
A. 0<≤30 B. 0<≤90 C. 30≤≤90 D. 30≤≤180
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【2018甘肃兰州市高三一诊】已知圆: ,过且与圆相切的动圆圆心为.
(I)求点的轨迹的方程;
(II)设过点的直线交曲线于, 两点,过点的直线交曲线于, 两点,且,垂足为(, , , 为不同的四个点).
①设,证明: ;
②求四边形的面积的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com