【题目】在四棱锥P﹣ABCD中,底面ABCD是一直角梯形,BA⊥AD,AD∥BC,AB=BC=2,PA=3,AD=6,PA⊥底面ABCD,E是PD上的动点.若CE∥平面PAB,则三棱锥C﹣ABE的体积为( )
A.
B.
C.
D.
【答案】D
【解析】解:以A为原点,AD为x轴,AB为y轴,AP为z轴,建立空间直角坐标系, A(0,0,0),B(0,2,0),C(2,2,0),D(6,0,0),P(0,0,3),
设E(a,0,c), ,则(a,0,c﹣3)=(6λ,0,﹣3λ),
解得a=6λ,c=3﹣3λ,∴E(6λ,0,3﹣3λ),
=(6λ﹣2,﹣2,3﹣3λ),
平面ABP的法向量 =(1,0,0),
∵CE∥平面PAB,∴ =6λ﹣2=0,
解得 ,∴E(2,0,2),
∴E到平面ABC的距离d=2,
∴三棱锥C﹣ABE的体积:
VC﹣ABE=VE﹣ABC= = = .
故选:D.
以A为原点,AD为x轴,AB为y轴,AP为z轴,建立空间直角坐标系,利用向量法能求出三棱锥C﹣ABE的体积.
科目:高中数学 来源: 题型:
【题目】某公司有4家直营店, , , ,现需将6箱货物运送至直营店进行销售,各直营店出售该货物以往所得利润统计如下表所示.根据此表,该公司获得最大总利润的运送方式有
A. 种 B. 种 C. 种 D. 种
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若数列: , ,…, ()中()且对任意的
恒成立,则称数列为“数列”.
(Ⅰ)若数列, , , 为“数列”,写出所有可能的, ;
(Ⅱ)若“数列”: , ,…, 中, , ,求的最大值;
(Ⅲ)设为给定的偶数,对所有可能的“数列”: , ,…, ,
记,其中表示, ,…, 这个数中最大的数,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在古希腊毕达哥拉斯学派把1,3,6,10,15,21,28,…这些数叫做三角形数,因为这些数对应的点可以排成一个正三角形则第n个三角形数为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在几何体中,四边形为菱形,对角线与的交点为,四边形为梯形, .
(Ⅰ)若,求证: 平面;
(Ⅱ)求证:平面平面;
(Ⅲ)若, , ,求与平面所成角.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知Rt△ABC,∠ABC=90°,D是AC的中点,⊙O经过A,B,D三点,CB的延长线交⊙O于点E,过点E作⊙O的切线,交AC的延长线于点F.在满足上述条件的情况下,当∠CAB的大小变化时,图形也随着改变,但在这个变化过程中,有些线段总保持着相等的关系.
(1)连接图中已标明字母的某两点,得到一条新线段与线段CE相等,并说明理由;
(2)若CF=CD,求sin F的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,且满足2acosC﹣(2b﹣c)=0.
(1)求角A;
(2)若sinC=2sinB,且a= ,求边b,c.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量=(3,﹣4),=(6,﹣3),=(5﹣m,﹣3﹣m).
(Ⅰ)若点A,B,C不能构成三角形,求实数m应满足的条件;
(Ⅱ)若△ABC为直角三角形,且C为直角,求实数m的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com