精英家教网 > 高中数学 > 题目详情
13.在四边形ABCD中,∠A=60°,∠B=60°,∠C=105°,BC=1,则AB的取值范围(  )
A.(1,2)B.(2-$\sqrt{3}$,1)C.(2-$\sqrt{3}$,2+$\sqrt{3}$)D.(1,2+$\sqrt{3}$)

分析 考虑极端位置,利用正弦定理,即可得出结论.

解答 解:如图所示,延长BA,CD交于E,平移AD,当A与D重合与E点时,AB最长,在△BCE中,∠B=60°,∠C=105°,∠E=15°,BC=1,由正弦定理可得BE=$\frac{1×\frac{\sqrt{6}+\sqrt{2}}{4}}{\frac{\sqrt{6}-\sqrt{2}}{4}}$=2+$\sqrt{3}$.
平移AD,当D与C重合时,AB最短,此时与AB交于F,在△BCF中,∠B=60°,∠BFC=60°,BF=BC=1,
所以AB的取值范围为(1,2+$\sqrt{3}$).
故选:D.

点评 本题考查正弦定理的运用,考查学生的计算能力,考虑极端位置简化解题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.在直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知
曲线C1:$\sqrt{2}$ρsin(θ-$\frac{π}{4}$)=3,曲线C2:$\left\{\begin{array}{l}{x=\sqrt{t}}\\{y=t+1}\end{array}\right.$,(t为参数).
(I)写出C1的直角坐标方程和C2的普通方程;
(Ⅱ)设C1和C2的交点为P,求点P在直角坐标系中的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.假设关于某设备使用年限x(年)和所支出的维修费用y(万元)有如表统计资料:
x23456
y2.23.85.56.57.0
若由资料知,y对x呈线性相关关系,试求:
(Ⅰ)请画出表数据的散点图;
(Ⅱ)请根据表提供的数据,求出y关于x的线性回归方程$y=\widehatbx+\widehata$;
(Ⅲ)计算出第2年和第6年的残差.(2×2.2+3×3.8+4×5.5+5×6.5+6×7.0=112.3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=nx-xn,x∈R,其中n∈N*,n≥2.
(1)讨论f(x)的单调性;
(2)设曲线y=f(x)与x轴正半轴的交点为P,曲线在点P处的切线方程为y=g(x),求证:对于任意的正实数x,都有f(x)≤g(x).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.给出下列命题:
①函数y=tan x的图象关于点($\frac{kπ}{2}$,0)(k∈Z)对称;
②函数f(x)=sin|x|是最小正周期为π的周期函数;
③函数y=cos2x+sin x最小值为-1;
④设θ为第二象限的角,则tan $\frac{θ}{2}$>cos$\frac{θ}{2}$,且sin$\frac{θ}{2}$>cos$\frac{θ}{2}$.
其中正确的命题序号是①③.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.n个连续自然数按规律排成如图,则表中从2015到2017的箭头方向依次为(  )
A.↓→B.→↑C.↑→D.→↓

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)满足f(x+$\frac{3}{4}$)=f(x-$\frac{3}{4}$),当x∈[$\frac{1}{2}$,2]时,f(x)=|log2x|,则方程f(x)=logπx在[$\frac{1}{2}$,5]的实根个数为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.某高中数学老师从一张测试卷的12道选择题、4道填空题、6道解答题中任取3道题作分析,则在取到选择题时解答题也取到的概率为(  )
A.$\frac{{C_{12}^1•C_6^1•C_{20}^1}}{{C_{22}^3-C_{10}^3}}$
B.$\frac{{C_{12}^1•C_6^1•C_4^1+C_{12}^1•C_6^2}}{{C_{22}^3-C_{10}^3}}$
C.$\frac{{C_{12}^1•(C_6^1•C_4^1+C_6^2)+C_{12}^2•C_6^1}}{{C_{22}^3-C_{10}^3}}$
D.$\frac{{C_{22}^3-C_{10}^3-C_{16}^3}}{{C_{22}^3-C_{10}^3}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设a=0.80.8,b=0.81.2,c=1.20.8则(  )
A.c>a>bB.c>b>aC.a>b>cD.b>a>c

查看答案和解析>>

同步练习册答案