精英家教网 > 高中数学 > 题目详情
下列四组函数中,表示同一函数的是(  )
分析:分别判断两个函数的定义域和对应法则是否完全相同即可.
解答:解:A.g(x)=|x|=
x,x>0
0,x=0
-x,x<0
,当x=0时的对应法则不相同,所以f(x),g(x)不能表示同一函数.
B.f(x)=lgx2,的定义域为{x|x≠0},g(x)=2lgx的定义域为{x|x>0},所以两个函数的定义域不同,所以f(x),g(x)不能表示同一函数.
C.两个函数的定义域都为R,f(x)=sin(2x+
π
4
)=cos(
π
2
-2x-
π
4
)=cos(
π
4
-2x)=cos(2x-
π
4
)
,所以f(x),g(x)能表示同一函数.
D.要使函数f(x)有意义,则
x-1≥0
x+1≥0
,即x≥1,要使函数g(x)有意义,则x2-1≥0,解得x≤-1或x≥1,所以两个函数的定义域不同,所以f(x),g(x)不能表示同一函数.
故选C.
点评:本题主要考查判断两个函数是否为同一函数,判断的标准是函数的定义域与对应法则是否完全相同.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列四组函数中,表示相同函数的一组是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

下列四组函数中,表示同一函数的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

下列四组函数中,表示相等函数的一组是(  )
A、f(x)=|x|,g(x)=
x2
B、f(x)=
x2
g(x)=(
x
)2
C、f(x)=
x2-1
x-1
,g(x)=x+1
D、f(x)=
x+1
?
x-1
g(x)=
x2-1

查看答案和解析>>

科目:高中数学 来源: 题型:

下列四组函数中,表示相等函数的一组是(  )
A、f(x)=|x-1|,g(x)=
(x-1)2
B、f(x)=(
x
)2,g(x)=
x2
C、f(x)=
x2-1
x-1
,g(x)=x+1
D、f(x)=
x+2
 
x-2
,g(x)=
x2-4

查看答案和解析>>

科目:高中数学 来源: 题型:

下列四组函数中,表示同一个函数的是(  )
A、f(x)=|x+1|,g(x)=
(x+1)2
B、f(x)=
x2
,g(x)=(
x
2
C、f(x)=
x2-1
x+1
,g(x)=x-1
D、f(x)=2 log2x,g(x)=x

查看答案和解析>>

同步练习册答案