13£®ÒÑÖªÔ²×¶ÇúÏß$C£º\left\{{\begin{array}{l}{x=2cos¦Á}\\{y=sin¦Á}\end{array}}\right.£¨¦ÁΪ²ÎÊý£©$ºÍ¶¨µã$A£¨{0£¬\sqrt{3}}£©$£¬F1£¬F2ÊÇ´ËÔ²×¶ÇúÏßµÄ×ó¡¢ÓÒ½¹µã£¬ÒÔÔ­µãOΪ¼«µã£¬ÒÔxÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£®
£¨¢ñ£©ÇóÖ±ÏßAF2µÄ¼«×ø±ê·½³Ì£»
£¨¢ò£©¾­¹ýµãF1ÇÒÓëÖ±ÏßAF2´¹Ö±µÄÖ±Ïßl½»´ËÔ²×¶ÇúÏßÓÚM£¬NÁ½µã£¬Çó||MF1|-|NF1||µÄÖµ£®

·ÖÎö £¨¢ñ£©ÏûÈ¥²ÎÊý¦Á¿ÉµÃÇúÏßCµÄ·½³ÌΪ$\frac{{x}^{2}}{4}$+y2=1£¬ÏȵÃÖ±ÏߵįÕͨ·½³Ì£¬»¯Îª¼«×ø±ê·½³Ì¼´¿É£»
£¨¢ò£©Ò×µÃlµÄ·½³Ì£¬½â·½³Ì×é¿ÉµÃ½»µã×ø±ê£¬ÓÉÁ½µã¼äµÄ¾àÀ빫ʽ¿ÉµÃ£®

½â´ð ½â£º£¨¢ñ£©ÏûÈ¥²ÎÊý¦Á¿ÉµÃÇúÏßCµÄ·½³ÌΪ$\frac{{x}^{2}}{4}$+y2=1£¬
¿ÉµÃF1£¨-$\sqrt{3}$£¬0£©£¬F2£¨$\sqrt{3}$£¬0£©£¬
¡àÖ±ÏßAF2µÄбÂÊΪk=$\frac{\sqrt{3}-0}{0-\sqrt{3}}$=-1£¬
¹ÊÖ±Ïß·½³ÌΪy-$\sqrt{3}$=-£¨x-0£©£¬¼´x+y=$\sqrt{3}$£¬
¡à¼«×ø±ê·½³ÌΪ¦Ñcos¦È+¦Ñsin¦È=$\sqrt{3}$£»
£¨¢ò£©¾­¹ýµãF1£¨-$\sqrt{3}$£¬0£©ÇÒÓëÖ±ÏßAF2´¹Ö±µÄÖ±ÏßlбÂÊΪ1£¬
¹ÊlµÄ·½³ÌΪy-0=x+$\sqrt{3}$£¬¼´y=x+$\sqrt{3}$£¬
ÁªÁ¢$\left\{\begin{array}{l}{y=x+\sqrt{3}}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$¿É½âµÃM£¨$\frac{-4\sqrt{3}+2\sqrt{2}}{5}$£¬$\frac{\sqrt{3}+2\sqrt{2}}{5}$£©£¬N£¨$\frac{-4\sqrt{3}-2\sqrt{2}}{5}$£¬$\frac{\sqrt{3}-2\sqrt{2}}{5}$£©£¬
¡àÓÉÁ½µã¼äµÄ¾àÀ빫ʽ¿ÉµÃ||MF1|-|NF1||=$\frac{8}{5}$£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ²ÎÊý·½³ÌºÍÖ±Ïߵļ«×ø±ê·½³Ì£¬Éæ¼°Ö±ÏߺÍÍÖÔ²ÏཻµÄÎÊÌ⣬ÊôÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®ÒÑ֪˫ÇúÏß·½³Ì$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1£¨a£¾0£¬b£¾0£©$£¬ÒÔOΪԲÐÄ£¬Êµ°ëÖ᳤Ϊ°ë¾¶×÷Ô²O£¬¹ýË«ÇúÏߵĽ¹µãF×÷Ô²OµÄÁ½ÌõÇÐÏߣ¬ÇеãΪA£¬B£¬ÈôËıßÐÎFAOBΪÕý·½ÐΣ¬ÔòË«ÇúÏßµÄÀëÐÄÂÊΪ£¨¡¡¡¡£©
A£®$\frac{3}{2}$B£®$\sqrt{2}$C£®$\sqrt{3}$D£®2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOy£¬ÒÑ֪˫ÇúÏß$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾0£¬b£¾0£©µÄÒ»¸ö½¥½üÏߵķ½³ÌΪy=$\sqrt{3}$x£¬Ôò¸ÃË«ÇúÏßµÄÀëÐÄÂÊΪ2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®Èçͼ£¬ÔÚ¼¸ºÎÌåABCDEFÖУ¬FA¡ÍÆ½ÃæABCD£¬EC¡ÎFA£¬FA=2EC=2$\sqrt{2}$£¬µ×ÃæABCDΪƽÐÐËıßÐΣ¬AD¡ÍBD£¬AD=BD=2£¬FD¡ÍBE£®
£¨1£©ÇóÖ¤£ºFD¡ÍÆ½ÃæBDE£»
£¨2£©ÇóÈýÀâ×¶F-BDEµÄÌå»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®Èçͼ£¬Ö±ÈýÀâÖùABC-A1B1C1ÖУ¬AC=4£¬BC=3£¬AA1=4£¬AC¡ÍBC£¬µãMÔÚÏß¶ÎABÉÏ£®
£¨¢ñ£©ÈôMÊÇABÖе㣬֤Ã÷AC1¡ÎÆ½ÃæB1CM£»
£¨¢ò£©µ±BM³¤ÊǶàÉÙʱ£¬ÈýÀâ×¶B1-BCMµÄÌå»ýÊÇÈýÀâÖùABC-A1B1C1µÄÌå»ýµÄ$\frac{1}{9}$£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®¹ýÔ­µãµÄÖ±ÏßlÓëË«ÇúÏß$\frac{x^2}{9}-\frac{y^2}{3}=-1$ÓÐÁ½¸ö½»µã£¬ÔòÖ±ÏßlµÄÇãб½ÇµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®$[{\frac{¦Ð}{6}£¬\frac{5¦Ð}{6}}]$B£®$£¨{\frac{¦Ð}{6}£¬\frac{5¦Ð}{6}}£©$C£®$£¨{\frac{¦Ð}{6}£¬\frac{¦Ð}{2}}£©¡È£¨{\frac{¦Ð}{2}£¬\frac{5¦Ð}{6}}£©$D£®$[{\frac{¦Ð}{6}£¬\frac{¦Ð}{2}}£©¡È£¨{\frac{¦Ð}{2}£¬\frac{5¦Ð}{6}}]$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÒÑÖªËÄÀą̂ABCD-A1B1C1D1µÄÉÏϵ×Ãæ·Ö±ðÊDZ߳¤Îª2ºÍ4µÄÕý·½ÐΣ¬AA1=4ÇÒAA1¡Íµ×ÃæABCD£¬µãPΪDD1µÄÖе㣮
£¨¢ñ£©ÇóÖ¤£ºAB1¡ÍÃæPBC£»
£¨¢ò£©ÔÚBC±ßÉÏÕÒÒ»µãQ£¬Ê¹PQ¡ÎÃæA1ABB1£¬²¢ÇóÈýÀâ×¶Q-PBB1µÄÌå»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÈçͼËùʾ£¬ËÄÀâ×¶S-ABCDÖУ¬µ×ÃæABCDΪÕý·½ÐΣ¬ÇÒAB=4£¬SA¡ÍÆ½ÃæABCD£¬¡ÏSDA=60¡ã£¬E¡¢F¡¢G·Ö±ðÊÇSC¡¢SD¡¢ACÉϵĵ㣬ÇÒ$\frac{SE}{EC}$=$\frac{SF}{FD}$=$\frac{AG}{GC}$£®
£¨1£©ÇóÖ¤£ºFG¡ÎÆ½ÃæSAB£»
£¨2£©ÈôÆ½ÃæABE¡ÍÆ½ÃæSCD£¬Çó¶àÃæÌåSABEFµÄÌå»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®ÈçͼËùʾµÄ¼¸ºÎÌåÊÇÓÉÒ»¸öÕýÈýÀâ×¶S-A1B1C1ºÍÒ»¸öËùÓÐÀⳤ¶¼ÏàµÈµÄÕýÈýÀâÖùABC-A1B1C1×éºÏ¶ø³É£¬ÇҸü¸ºÎÌåµÄÍâ½ÓÇò£¨¼¸ºÎÌåµÄËùÓж¥µã¶¼ÔÚ¸ÃÇòÃæÉÏ£©µÄ±íÃæ»ýΪ7¦Ð£¬ÔòÈýÀâ×¶S-A1B1C1µÄÌå»ýΪ$\frac{\sqrt{21}-3}{8}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸