分析 求出双曲线的渐近线方程y=±$\frac{b}{a}$x,由题意可得b=$\sqrt{3}$a,由a,b,c的关系和离心率公式计算即可得到所求值.
解答 解:双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的渐近线方程为y=±$\frac{b}{a}$x,
由一条渐近线的方程为y=$\sqrt{3}$x,可得b=$\sqrt{3}$a,
即有c=$\sqrt{{a}^{2}+{b}^{2}}$=2a,
即有e=$\frac{c}{a}$=2.
故答案为:2.
点评 本题考查双曲线的离心率的求法,注意运用渐近线方程和基本量的关系,考查运算能力,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com