精英家教网 > 高中数学 > 题目详情
15.设f(x)=|ln(x+1)|,已知f(a)=f(b)(a<b),则(  )
A.a+b>0B.a+b>1C.2a+b>0D.2a+b>1

分析 结合对数函数与绝对值可得-ln(a+1)=ln(b+1),从而可得ab+a+b=0;从而由基本不等式可得(a+b)(a+b+4)>0,从而判断.

解答 解:易知y=ln(x+1)在定义域上是增函数,
而f(x)=|ln(x+1)|,且f(a)=f(b);
故-ln(a+1)=ln(b+1),
即ab+a+b=0.
$0=ab+a+b<\frac{{{{({a+b})}^2}}}{4}+a+b$,
即(a+b)(a+b+4)>0,
显然-1<a<0,b>0,
∴a+b+4>0,
∴a+b>0,
故选A.

点评 本题考查了对数函数与绝对值函数的性质的判断与应用,同时考查了基本不等式与转化思想的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.分别求列函数的值域.
(1)f(x)=$\frac{\sqrt{4x-{x}^{2}}}{x+2}$;
(2)y=x+$\sqrt{4-{x}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在直三棱柱ABC-A1B1C1中,AB=AC=1,∠BAC=90°,且异面直线A1B与B1C1所成的角等于60°,设AA1=a.
(1)求a的值;
(2)求三棱锥B1-A1BC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知双曲线方程$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$,以O为圆心,实半轴长为半径作圆O,过双曲线的焦点F作圆O的两条切线,切点为A,B,若四边形FAOB为正方形,则双曲线的离心率为(  )
A.$\frac{3}{2}$B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.有红盒、黄盒、蓝盒各一个,只有-个盒子里有金币.
红盒上写有命题p:金币在这个盒子里;
黄盒上写有命题q:金币不在这个金子里;
蓝盒上写有命题r:金币不在红盒里.
p、q、r中有且只有一个是真命题,则金币在黄盒子里.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.四棱锥E-ABCD中,AD∥BC,AD=AE=2BC=2AB=2,AB⊥AD,平面EAD⊥平面ABCD,点F为DE的中点.
(Ⅰ)求证:CF∥平面EAB;
(Ⅱ)若CF⊥AD,求四棱锥E-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知四棱锥P-ABCD的底面是直角梯形,AB∥CD,∠DAB=90°,PD⊥底面ABCD,且PD=DA=CD=2AB=2,M为PC的中点,过A,B,M三点的平面与PD交于点N.
(1)求证:BM∥平面PAD;
(2)求多面体MN-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在平面直角坐标系xOy,已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一个渐近线的方程为y=$\sqrt{3}$x,则该双曲线的离心率为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知四棱台ABCD-A1B1C1D1的上下底面分别是边长为2和4的正方形,AA1=4且AA1⊥底面ABCD,点P为DD1的中点.
(Ⅰ)求证:AB1⊥面PBC;
(Ⅱ)在BC边上找一点Q,使PQ∥面A1ABB1,并求三棱锥Q-PBB1的体积.

查看答案和解析>>

同步练习册答案