分析 (1)连结B′C.由中位线定理得EF∥B′C,由AB=AC得AH⊥BC,由BB′⊥平面ABC得BB′⊥AH,故AH⊥平面BB′C,于是AH⊥B′C,从而EF⊥AH;
(2)过F作FM⊥AB于M,则FM⊥平面ABC,求出FM和S△AEH,于是VE-FAH=VF-AEH.
解答
证明:(1)连结B′C.
∵E,F分别是AC,AB′的中点,
∴EF∥B′C,
∵AB=AC,H是BC的中点,∴AH⊥BC,
∵BB′⊥平面ABC,AH?平面ABC,
∴BB′⊥AH,又BC?平面BB′C,BC?平面BB′C,BB′∩BC=B,
∴AH⊥平面BB′C,∵B′C?平面BB′C,
∴AH⊥B′C,又B′C∥EF,
∴EF⊥AH.
解:(2)过F作FM⊥AB于M,则FM⊥平面ABC,FM=$\frac{1}{2}$BB′=1.
∵S△AEH=$\frac{1}{2}AE•EH$=$\frac{1}{2}$,
∴VE-FAH=VF-AEH=$\frac{1}{3}{S}_{△AEH}•FM$=$\frac{1}{3}×\frac{1}{2}×1$=$\frac{1}{6}$.
点评 本题考查了线面垂直的判定与性质,棱锥的体积计算,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{2}$ | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com