精英家教网 > 高中数学 > 题目详情
过点P(-3,0)且倾斜角为30°直线和曲线
x=t+
1
t
y=t-
1
t
(t为参数)相交于A、B两点.则线段AB的长为(  )
A.
4
3
51
B.
17
C.
51
D.2
17
直线的参数方程为
x=-3+
3
2
s
y=
1
2
s
(s 为参数),曲线
x=t+
1
t
y=t-
1
t
可以化为 x2-y2=4.
将直线的参数方程代入上式,得 s2-6
3
s+10=0

设A、B对应的参数分别为 s1,s2,∴s1+s2=6
3
,s1•s2=10.
∴AB=|s1-s2|=
(s1-s2)2-4s1s2
=2
17

故选D.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,圆的直径延长线上一点,,割线交圆于点,,过点的垂线,交直线于点,交直线于点.
(1)求证:;
(2)求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C的中心在原点,焦点在x轴上,离心率e=
1
2
,一个顶点的坐标为(0,
3
)

(1)求椭圆C的方程;
(2)椭圆C的左焦点为F,右顶点为A,直线l:y=kx+m与椭圆C相交于M,N两点且
AM
AN
=0
,试问:是否存在实数λ,使得S△FMN=λS△AMN成立,若存在,求出λ的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆
x2
a2
+
y2
b2
=1(a>b>c>0,a2=b2+c2)
的左、右焦点分别为F1,F2,若以F2为圆心,b-c为半径作圆F2,过椭圆上一点P作此圆的切线,切点为T,且|PT|的最小值不小于
3
2
(a-c)

(1)求椭圆的离心率e的取值范围;
(2)设椭圆的短半轴长为1,圆F2与x轴的右交点为Q,过点Q作斜率为k(k>0)的直线l与椭圆相交于A,B两点,若OA⊥OB,求直线l被圆F2截得的弦长的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,椭圆C的中心在原点,焦点在x轴上,F1,F2分别是椭圆C的左、右焦点,M是椭圆短轴的一个端点,过F1的直线l与椭圆交于A,B两点,△MF1F2的面积为4,△ABF2的周长为8
2

(Ⅰ)求椭圆C的方程;
(Ⅱ)设点Q的坐标为(1,0),是否存在椭圆上的点P及以Q为圆心的一个圆,使得该圆与直线PF1,PF2都相切,如存在,求出P点坐标及圆的方程,如不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

双曲线
x2
v
-
y2
图6
=图
的右焦点是抛物线的焦点,则抛物线的标准方程是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图椭圆C的方程为
y2
a2
+
x2
b2
=1(a>b>0)
,A是椭圆C的短轴左顶点,过A点作斜率为-1的直线交椭圆于B点,点P(1,0),且BPy轴,△APB的面积为
9
2

(1)求椭圆C的方程;
(2)在直线AB上求一点M,使得以椭圆C的焦点为焦点,且过M的双曲线E的实轴最长,并求此双曲线E的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率e=
2
2
,过右焦点F且与x轴垂直的直线交椭圆于A,B两点,且|AB|=
2

(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线l:y=kx+t(t≠0)与椭圆C相交于M,N两点,直线AO平分线段MN,求△OMN的面积的最大值及此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

直线y=kx+2与双曲线x2-y2=2有且只有一个交点,那么实数k的值是(  )
A.k=±1B.k=±
3
C.k=±1或k=±
3
D.k=±
2

查看答案和解析>>

同步练习册答案