精英家教网 > 高中数学 > 题目详情
如图,圆的直径延长线上一点,,割线交圆于点,,过点的垂线,交直线于点,交直线于点.
(1)求证:;
(2)求的值.
(1)证明见解析;(2)24.

试题分析:
解题思路:(1)利用四点共圆的性质得出两角线段;(2)利用三角形相似和圆内接四边形的性质进行求解.
规律总结:直线与圆的位置关系,是平面几何问题的常见题型,常考知识由:圆内接四边形、切割线定理、相似三角形、全等三角形等.
试题解析:解法1:(1)连接,则
四点共圆.
.
四点共圆,∴
.                             

(2)∴四点共圆,                              
,又,  
.                          
解法2:(1)连接,则,又

,∴.
(2)∵
,∴,
,              
又∵,               
.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,△ABC中,AB=AC,AD是中线,P为AD上一点,CF∥AB,BP延长线交AC、CF于E、F,求证:PB2=PE·PF.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过点P(-3,0)且倾斜角为30°直线和曲线
x=t+
1
t
y=t-
1
t
(t为参数)相交于A、B两点.则线段AB的长为(  )
A.
4
3
51
B.
17
C.
51
D.2
17

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

过抛物线y2=4x的焦点作倾斜角为
π
3
的直线与抛物线交于点A、B,则|AB|=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:
x2
a2
+
y2
b2
=它(a>b>0)的短轴长为2,离心率为
2
2

(它)求椭圆C的方程;
(2)若过点M(2,0)的引斜率为k的直线与椭圆C相交于两点G、H,设m为椭圆C上一点,且满足
OG
+
OH
=t
Om
(O为坐标原点),当|
mG
-
mH
|<
2
5
3
时,求实数t的取值范围?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线C:y2=2px(p>0)的焦点为F,点K(-1,0)为直线l与抛物线C准线的交点.直线l与抛物线C相交于A,B两点,点A关于x轴的对称点为D.
(1)求抛物线C的方程;
(2)设
FA
FB
=
8
9
,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,是圆的直径,是圆的切线,切点为平行于弦,若,则    .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列说法正确的是(  ) 
A.若两个角互补,则这两个角是邻补角;
B.若两个角相等,则这两个角是对顶角
C.若两个角是对顶角,则这两个角相等;
D.以上判断都不对

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

(2012•广东)(几何证明选讲选做题)如图,圆O中的半径为1,A、B、C是圆周上的三点,满足∠ABC=30°,过点A作圆O的切线与 O C 的延长线交于点P,则图PA= _________ 

查看答案和解析>>

同步练习册答案