4£®ÒÑÖªº¯Êýf£¨x£©=£¨2k-1£©lnx+$\frac{k}{x}$+2x£¬ÓÐÒÔÏÂÃüÌ⣺
¢Ùµ±k=-$\frac{1}{2}$ʱ£¬º¯Êýf£¨x£©ÔÚ£¨0£¬$\frac{1}{2}}$£©Éϵ¥µ÷µÝÔö£»
¢Úµ±k¡Ý0ʱ£¬º¯Êýf£¨x£©ÔÚ£¨0£¬+¡Þ£©ÉÏÓм«´óÖµ£»
¢Ûµ±-$\frac{1}{2}$£¼k£¼0ʱ£¬º¯Êýf£¨x£©ÔÚ£¨$\frac{1}{2}$£¬+¡Þ£©Éϵ¥µ÷µÝ¼õ£»
¢Üµ±k£¼-$\frac{1}{2}$ʱ£¬º¯Êýf£¨x£©ÔÚ£¨0£¬+¡Þ£©ÉÏÓм«´óÖµf£¨${\frac{1}{2}}$£©£¬Óм«Ð¡Öµf£¨-k£©£®
ÆäÖÐÕýÈ·ÃüÌâµÄÐòºÅÊÇ£¨¡¡¡¡£©
A£®¢Ù¢ÛB£®¢Ú¢ÜC£®¢Ù¢ÜD£®¢Ú¢Û

·ÖÎö Çóº¯ÊýµÄµ¼Êý£¬·Ö±ðÀûÓú¯Êýµ¥µ÷ÐԺ͵¼ÊýÖ®¼äµÄ¹ØÏµ½øÐÐÅжϼ´¿É£®

½â´ð ½â£ºº¯ÊýµÄ¶¨ÒåÓòΪ£¨0£¬+¡Þ£©£¬
º¯ÊýµÄµ¼Êýf¡ä£¨x£©=$\frac{2k-1}{x}$-$\frac{k}{{x}^{2}}$+2=$\frac{2{x}^{2}+£¨2k-1£©x-k}{{x}^{2}}$=$\frac{£¨x+k£©£¨2x-1£©}{{x}^{2}}$=$\frac{2£¨x+k£©£¨x-\frac{1}{2}£©}{{x}^{2}}$£¬
¢Ùµ±k=-$\frac{1}{2}$ʱ£¬f¡ä£¨x£©=$\frac{2£¨x-\frac{1}{2}£©^{2}}{{x}^{2}}$¡Ý0ºã³ÉÁ¢£¬Ôòº¯Êýf£¨x£©ÔÚ£¨0£¬+¡Þ£©Éϵ¥µ÷µÝÔö£¬
ÔòÔÚ£¨0£¬$\frac{1}{2}}$£©Éϵ¥µ÷µÝÔö£¬¹Ê¢ÙÕýÈ·£»
¢Úµ±k¡Ý0ʱ£¬ÓÉf¡ä£¨x£©£¾0µÃx£¾$\frac{1}{2}$£¬´Ëʱº¯ÊýΪÔöº¯Êý£¬
ÓÉf¡ä£¨x£©£¼0£¬µÃ0£¼x£¼$\frac{1}{2}$£¬´Ëʱº¯ÊýΪ¼õº¯Êý£¬¼´µ±x=$\frac{1}{2}$ʱ£¬º¯Êýf£¨x£©´æÔÚ¼«Ð¡Öµ£¬
¼´¿Éº¯Êýf£¨x£©ÔÚ£¨0£¬+¡Þ£©ÉÏÓм«´óÖµ´íÎ󣬹ʢڴíÎó£»
¢Ûµ±-$\frac{1}{2}$£¼k£¼0ʱ£¬Ôò0£¼-k£¼$\frac{1}{2}$£¬
ÓÉf¡ä£¨x£©£¼0µÃ-k£¼x£¼$\frac{1}{2}$£¬
ÓÉf¡ä£¨x£©£¾0µÃ0£¼x£¼-k»òx£¾$\frac{1}{2}$£¬¼´º¯Êýf£¨x£©ÔÚ£¨$\frac{1}{2}$£¬+¡Þ£©Éϵ¥µ÷µÝÔö£»¹Ê¢Û´íÎó£¬
¢Üµ±k£¼-$\frac{1}{2}$ʱ£¬-k£¾$\frac{1}{2}$£¬ÓÉf¡ä£¨x£©£¾0µÃ0£¼x£¼$\frac{1}{2}$»òx£¾-k£¬´Ëʱº¯Êýµ¥µ÷µÝÔö£¬
ÓÉf¡ä£¨x£©£¼0µÃ$\frac{1}{2}$£¼x£¼-k£¬¼´º¯ÊýΪ¼õº¯Êý£¬¼´º¯Êýf£¨x£©ÔÚ£¨0£¬+¡Þ£©ÉÏÓм«´óÖµf£¨${\frac{1}{2}}$£©£¬
Óм«Ð¡Öµf£¨-k£©£®¹Ê¢ÜÕýÈ·£¬
¹ÊÕýÈ·ÃüÌâµÄÐòºÅ¢Ù¢Ü£¬
¹ÊÑ¡£ºC

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÃüÌâµÄÕæ¼ÙÅжϣ¬Éæ¼°º¯ÊýµÄµ¥µ÷ÐԺ͵¼ÊýµÄ¹ØÏµ£¬¿¼²éѧÉúµÄ¼ÆËãÄÜÁ¦£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®ÒÑÖªf£¨$\frac{1}{2}$x-1£©=2x+3£¬ÇÒf£¨m-1£©=6£¬ÔòʵÊýmµÈÓÚ$\frac{3}{4}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÒÑ֪ʵÊý¶Ô£¨x£¬y£©£¬ÉèÓ³Éäf£º£¨x£¬y£©¡ú£¨$\frac{x+y}{2}$£¬$\frac{x-y}{2}$£©£¬²¢¶¨Òå|£¨x£¬y£©|=$\sqrt{{x}^{2}+{y}^{2}}$£¬Èô|f[f£¨f£¨x£¬y£©£©]|=4£¬Ôò|£¨x£¬y£©|µÄֵΪ£¨¡¡¡¡£©
A£®4$\sqrt{2}$B£®8$\sqrt{2}$C£®16$\sqrt{2}$D£®32$\sqrt{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®ÔÚÀⳤΪ1µÄÕý·½ÌåABCD-A1B1C1D1ÖУ¬µãPÊÇÕý·½ÌåÀâÉϵÄÒ»µã£¨²»°üÀ¨ÀâµÄµã£©£¬ÇÒÂú×ã|PB|+|PD1|=2£¬ÔòµãPµÄ¸öÊýΪ6£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÒÔÖ±½Ç×ø±êϵµÄÔ­µãΪ¼«µã£¬xÖáµÄ·Ç¸º°ëÖáΪ¼«Öᣬ²¢ÔÚÁ½ÖÖ×ø±êϵÖÐÈ¡ÏàͬµÄ³¤¶Èµ¥Î»£®ÒÑÖªÖ±ÏßlµÄ²ÎÊý·½³Ì$\left\{\begin{array}{l}{x=\frac{1}{2}+tcos¦Á}\\{y=tsin¦Á}\end{array}\right.$£¨tΪ²ÎÊý£¬0£¼¦Á£¼¦Ð£©£¬Å×ÎïÏßCµÄÖ±½Ç×ø±ê·½³ÌΪy2=2x£®
£¨1£©ÇóÅ×ÎïÏßCµÄ×¼Ïߵļ«×ø±ê·½³Ì£»
£¨2£©ÉèÖ±ÏßlÓëÅ×ÎïÏßCÏཻÓÚA£¬BÁ½µã£¬Ö¤Ã÷|AB|¡Ý2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®ÒÑÖªµãA£¨2£¬-3£©£¬B£¨-1£¬-3£©£¬Èô¹ýµãP£¨1£¬1£©ÇÒбÂÊΪkµÄÖ±ÏßlÓëÏß¶ÎAB²»Ïཻ£¬ÔòkµÄȡֵ·¶Î§ÊÇ£¨-¡Þ£¬-4]¡È[2£¬+¡Þ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®Èô7a=2£¬b=log73£¬Çó72a-3b£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®ÒÑÖªº¯Êýf£¨x£©=$\left\{\begin{array}{l}{-{x}^{2}-2x£¬-4¡Üx¡Ü0}\\{-{2}^{x}£¬0£¼x¡Üa}\end{array}\right.$µÄÖµÓòÊÇ[-8£¬1]£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ£¨0£¬3]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®Ó뺯Êýy=x±íʾͬһ¸öº¯ÊýÊÇ£¨¡¡¡¡£©
A£®y=$\sqrt{{x}^{2}}$B£®y=a${\;}^{lo{g}_{a}x}$C£®y=$\frac{{x}^{2}}{x}$D£®y=$\root{3}{{x}^{3}}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸