【题目】如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不垂直的是
![]()
A.
B. ![]()
C.
D. ![]()
【答案】D
【解析】
由中位线定理和异面直线所成角,以及线面垂直的判定定理,即可得到正确结论.
解:对于A,AB为体对角线,MN,MQ,NQ分别为棱的中点,由中位线定理可得它们平行于所对应的面对角线,连接另一条面对角线,由线面垂直的判定可得AB垂直于MN,MQ,NQ,可得AB垂直于平面MNQ;
对于B,AB为上底面的对角线,显然AB垂直于MN,与AB相对的下底面的面对角线平行,且与直线NQ垂直,可得AB垂直于平面MNQ;
对于C,AB为前面的面对角线,显然AB垂直于MN,QN在下底面且与棱平行,此棱垂直于AB所在的面,即有AB垂直于QN,可得AB垂直于平面MNQ;
对于D,AB为上底面的对角线,MN平行于前面的一条对角线,此对角线与AB所成角为
,
则AB不垂直于平面MNQ.
故选:D.
科目:高中数学 来源: 题型:
【题目】某农科所对冬季昼夜温差(最高温度与最低温度的差)大小与某反季节大豆新品种一天内发芽数之间的关系进行了分析研究,他们分别记录了12月1日至12月6日每天昼夜最高、最低的温度(如图甲),以及实验室每天每100颗种子中的发芽数情况(如图乙),得到如下资料:
![]()
最高温度
最低温度
甲
![]()
乙
(1)请画出发芽数y与温差x的散点图;
(2)若建立发芽数y与温差x之间的线性回归模型,请用相关系数说明建立模型的合理性;
(3)①求出发芽数y与温差x之间的回归方程
(系数精确到0.01);
②若12月7日的昼夜温差为
,通过建立的y关于x的回归方程,估计该实验室12月7日当天100颗种子的发芽数.
参考数据:![]()
![]()
![]()
.
参考公式:
相关系数:
(当
时,具有较强的相关关系).
回归方程
中斜率和截距计算公式:![]()
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知A、B、C是椭圆W:
上的三个点,O是坐标原点.
(I)当点B是W的右顶点,且四边形OABC为菱形时,求此菱形的面积.
(II)当点B不是W的顶点时,判断四边形OABC是否可能为菱形,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左、右焦点分别为
,
,过点
的直线与椭圆
交于
两点,延长
交椭圆
于点
,
的周长为8.
![]()
(1)求
的离心率及方程;
(2)试问:是否存在定点
,使得
为定值?若存在,求
;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已定义
,已知函数
的定义域都是
,则下列四个命题中为真命题的是_________.(写出所有真命题的序号)
① 若
都是奇函数,则函数
为奇函数.
② 若
都是偶函数,则函数
为偶函数.
③ 若
都是增函数,则函数
为增函数.
④ 若
都是减函数,则函数
为减函数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地拟建造一座体育馆,其设计方案侧面的外轮廓线如图所示:曲线
是以点
为圆心的圆的一部分,其中![]()
,
是圆的切线,且
,曲线
是抛物线![]()
的一部分,
,且
恰好等于圆
的半径.
![]()
(1)若
米,
米,求
与
的值;
(2)若体育馆侧面的最大宽度
不超过75米,求
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com