【题目】某地拟建造一座体育馆,其设计方案侧面的外轮廓线如图所示:曲线
是以点
为圆心的圆的一部分,其中![]()
,
是圆的切线,且
,曲线
是抛物线![]()
的一部分,
,且
恰好等于圆
的半径.
![]()
(1)若
米,
米,求
与
的值;
(2)若体育馆侧面的最大宽度
不超过75米,求
的取值范围.
科目:高中数学 来源: 题型:
【题目】若函数
满足:对于任意正数
,都有
,且
,则称函数
为“
函数”。
(1)试判断函数
是否是“
函数”并说明理由;
(2)若函数
为“
函数”,求实数
的取值范围;
(3)若函数
为“
函数”,且
.
求证(
)
;
(
)对任意
,都有
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动点P到定点
的距离与点P到定直线
的距离之比为![]()
(1)求动点P的轨迹C的方程;
(2)设M、N是直线l上的两个点,点E是点F关于原点的对称点,若
,求 | MN | 的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知关于
的不等式
的解集为
.
(1)若
,求
的取值范围;
(2)若存在两个不相等负实数
,使得
,求实数
的取值范围;
(3)若恰有三个整数
、
、
在集合
中,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】等边
的边长为
,点
,
分别是
,
上的点,且满足
(如图(1)),将
沿
折起到
的位置,使二面角
成直二面角,连接
,
(如图(2)).
![]()
(1)求证:
平面
;
(2)在线段
上是否存在点
,使直线
与平面
所成的角为
?若存在,求出
的长;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于定义在
上的函数
,有下述命题:①若
是奇函数,则
的图象关于点
对称;②函数
的图象关于直线
对称,则
为偶函数;③若对
,有
,则2是
的一个周期;④函数
与
的图象关于直线
对称.其中正确的命题是______.(写出所有正确命题的序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知O是坐标原点,抛物线
的焦点为F,过F且斜率为1的直线交抛物线C于A,B两点,Q为抛物线C的准线上一点,且
.
(1)求Q点的坐标;
(2)设与直线垂直的直线与抛物线C交于M,N两点,过M,N分别作抛物线C的切线
,
设直线
与
交于点P,若
,求
外接圆的标准方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙、丙、丁和戊5名学生进行某种劳动技术比赛,决出了第1到第5名的名次.甲乙两名参赛者去询问成绩,回答者对甲说,“很遗憾,你和乙都没没有拿到冠军.”对乙说,“你当然不会是最差的.”从这个回答分析,甲是第五名的概率是______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行调查,通过抽样,获得某年100为居民每人的月均用水量(单位:吨),将数据按照
分成9组,制成了如图所示的频率分布直方图.
(1)求直方图的
的值;
(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由.
(3)估计居民月用水量的中位数.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com