分析 因为{an}是等差数列,故a1、a3、a9都可用d表达,又因为a1、a3、a9恰好是等比数列,所以有a32=a1a9,即可求出d,从而可求出该等比数列的公比,最后即可求比值.
解答 解:等差数列{an}中,a1=a1,a3=a1+2d,a9=a1+8d,
因为a1、a3、a9恰好是某等比数列,
所以有a32=a1a9,即(a1+2d)2=a1(a1+8d),解得d=a1,
所以该等差数列的通项为an=nd
则$\frac{{a}_{1}+{a}_{3}+{a}_{5}}{{a}_{2}+{a}_{4}+{a}_{10}}$=$\frac{1+3+9}{2+4+10}$=$\frac{13}{16}$.
故答案是:$\frac{13}{16}$.
点评 本题考查等差数列的通项公式、等比数列的定义和公比,属基础知识、基本运算的考查.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ①②④③ | B. | ③②④① | C. | ②③①④ | D. | ②④③① |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com