【题目】已知命题
;命题
函数
在区间
上有零点.
(1)当
时,若
为真命题,求实数
的取值范围;
(2)若命题
是命题
的充分不必要条件,求实数
的取值范围.
科目:高中数学 来源: 题型:
【题目】如图,已知三棱锥A-BPC中,![]()
,M为AB的中点,D为PB的中点,且
为正三角形.
![]()
(1)求证:
平面APC;
(2)若
,
,求三棱锥D-BCM的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱
中,侧面
底面
,四边形
是边长为2的菱形,
,
,
,E,F分别为AC,
的中点.
![]()
(1)求证:直线EF∥平面
;
(2)设
分别在侧棱
,
上,且
,求平面BPQ分棱柱所成两部分的体积比.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列有关平面向量分解定理的四个命题:
(1)一个平面内有且只有一对不平行的向量可作为表示该平面所有向量的基;
(2)一个平面内有无数多对不平行向量可作为表示该平面内所有向量的基;
(3)平面向量的基向量可能互相垂直;
(4)一个平面内任一非零向量都可唯一地表示成该平面内三个互不平行向量的线性组合.
其中正确命题的个数是( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本题满分12分)已知椭圆
,直线
不过原点
且不平行于坐标轴,
与
有两个交点
,
,线段
的中点为
.
(Ⅰ)证明:直线
的斜率与
的斜率的乘积为定值;
(Ⅱ)若
过点
,延长线段
与
交于点
,四边形
能否为平行四边形?若能,求此时
的斜率,若不能,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定点
,动点P是圆M:
上的任意一点,线段NP的垂直平分线和半径MP相交于点Q.
求
的值,并求动点Q的轨迹C的方程;
若圆
的切线l与曲线C相交于A,B两点,求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
的内角
、
、
的对边分别为
、
、
,
为
内一点,若分别满足下列四个条件:
①
;
②
;
③
;
④
;
则点
分别为
的( )
A.外心、内心、垂心、重心B.内心、外心、垂心、重心
C.垂心、内心、重心、外心D.内心、垂心、外心、重心
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出以下三个命题:
①若
,则
;
②在
中,若
,则
;
③在一元二次方程
中,若
,则方程有实数根.
其中原命题、逆命题、否命题、逆否命题均为真命题的是________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com