精英家教网 > 高中数学 > 题目详情
19.已知两个正实数x,y满足x+y=4,则$\frac{1}{x}$+$\frac{4}{y}$的最小值是$\frac{9}{4}$.

分析 利用“乘1法”与基本不等式的性质即可得出.

解答 解:∵两个正实数x,y满足x+y=4,
则$\frac{1}{x}$+$\frac{4}{y}$=$\frac{1}{4}$(x+y)$(\frac{1}{x}+\frac{4}{y})$=$\frac{1}{4}$$(1+4+\frac{y}{x}+\frac{4x}{y})$=≥$\frac{1}{4}(5+2\sqrt{\frac{y}{x}×\frac{4x}{y}})$=$\frac{9}{4}$,当且仅当y=2x=$\frac{8}{3}$时取等号.
故答案为:$\frac{9}{4}$.

点评 本题考查了“乘1法”与基本不等式的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.双曲线x2-$\frac{{y}^{2}}{{b}^{2}}$=1(b>0)的左、右焦点分别为F1、F2,直线l过F2且与双曲线交于A、B两点.
(1)若l的倾斜角为$\frac{π}{2}$,△F1AB是等边三角形,求双曲线的渐近线方程;
(2)设b=$\sqrt{3}$,若l的斜率存在,M为AB的中点,且$\overrightarrow{FM}$•$\overrightarrow{AB}$=0,求l的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在正数等比数列{an}中,已知a2a6=16,a4+a8=8,则q=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.当x∈[0,5]时,函数f(x)=3x2-4x+c的值域为(  )
A.[f(0),f(5)]B.[f(0),f($\frac{2}{3}$)]C.[c,f(5)]D.[f$\frac{2}{3}$),f(5)]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=2sin(ωx-φ)-1(ω>0,|φ|<π)的一个零点是x=$\frac{π}{3}$,直线x=-$\frac{π}{6}$函数图象的一条对称轴,则ω取最小值时,f(x)的单调增区间是(  )
A.[-$\frac{π}{3}$+3kπ,-$\frac{π}{6}$+3kπ],k∈ZB.[-$\frac{5π}{3}$+3kπ,-$\frac{π}{6}$+3kπ],k∈Z
C.[-$\frac{2π}{3}$+2kπ,-$\frac{π}{6}$+2kπ],k∈ZD.[-$\frac{π}{3}$+2kπ,-$\frac{π}{6}$+2kπ],k∈Z

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.等差数列{an}的前n项和为Sn,若a5+a6=18,则S10的值为(  )
A.35B.54C.72D.90

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知三角形ABC中,$\overrightarrow{AB}=({{x_1},{y_1}}),\overrightarrow{AC}=({{x_2},{y_2}})$.
(1)若$\overrightarrow{AB}=({3,1}),\overrightarrow{AC}=({-1,3})$.求三角形ABC的面积S
(2)求三角形ABC的面积S

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.函数f(x)=x2+x-2a,若y=f(x)在区间(-1,1)内有零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知实数x,y满足$\left\{\begin{array}{l}{x+y≥0}\\{x-y+5≥0}\\{x≤3}\end{array}\right.$,则z=3x+4y的最小值为(  )
A.$\frac{5}{2}$B.-3C.10D.-10

查看答案和解析>>

同步练习册答案