精英家教网 > 高中数学 > 题目详情
10.在正数等比数列{an}中,已知a2a6=16,a4+a8=8,则q=1.

分析 根据等比数列的性质和方程的思想即可求出.

解答 解:正数等比数列{an}中,a2a6=16,a4+a8=8,
∴a4a8=16,
∴a4,a8是方程x2-8x+16=0的两个根,
解得a4=a8=4,
∴q4=$\frac{{a}_{8}}{{a}_{4}}$=1,
解得q=1或q=-1(舍去),
故答案为:1

点评 本题考查等比数列的通项公式的应用,解题时要认真审题,注意等价转化思想的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知$\frac{{cos({π-2α})}}{{sin({α-\frac{π}{4}})}}=-\frac{{\sqrt{2}}}{2}$,则-(cosα+sinα)等于(  )
A.$-\frac{{\sqrt{7}}}{2}$B.$\frac{{\sqrt{7}}}{2}$C.$\frac{1}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.双曲线的离心率为2,则双曲线的两条渐近线所成的锐角是60°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.用二分法求函数f(x)的一个零点,得到如下表的参考数据:
f(1)=-2f(1.5)=0.625
f(1.25)=-0.984f(1.375)=-0.260
f(1.438)=0.165f(1.4065)=-0.052
那么方程f(x)=0的一个近似解(精确到0.1)为(  )
A.1.2B.1.3C.1.4D.1.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数$y=\sqrt{sin(2x-\frac{π}{4})}$的定义域是(  )
A.$\left\{{x|\frac{π}{4}+2kπ≤x≤\frac{5π}{4}+2kπ,k∈Z}\right\}$B.$\left\{{x|\frac{π}{8}+kπ≤x≤\frac{5π}{8}+kπ,k∈Z}\right\}$
C.$\left\{{x|\frac{π}{8}+2kπ≤x≤\frac{5π}{8}+2kπ,k∈Z}\right\}$D.$\left\{{x|\frac{π}{4}+kπ≤x≤\frac{5π}{4}+kπ,k∈Z}\right\}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知数列f(x1),f(x2),…f(xn),…是公差为2的等差数列,且x1=a2其中函数f(x)=logax(a为常数且a>0,a≠1).
(Ⅰ)求数列{xn}的通项公式;
(Ⅱ)若an=logaxn,求证$\frac{4}{{a}_{1}{a}_{2}}$+$\frac{4}{{a}_{2}{a}_{3}}$+…+$\frac{4}{{a}_{n}{a}_{n+1}}$<1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.(理)已知$\overrightarrow{a}$=(2,-1,2),$\overrightarrow{b}$=(2,2,1),求以$\overrightarrow{a}$,$\overrightarrow{b}$为邻边的平行四边形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知两个正实数x,y满足x+y=4,则$\frac{1}{x}$+$\frac{4}{y}$的最小值是$\frac{9}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数f(x)=|x2-2x-3|的单调增区间是[-1,1]和[3,+∞).

查看答案和解析>>

同步练习册答案