| A. | $-\frac{{\sqrt{7}}}{2}$ | B. | $\frac{{\sqrt{7}}}{2}$ | C. | $\frac{1}{2}$ | D. | $-\frac{1}{2}$ |
分析 把已知等式左边的分子利用诱导公式及二倍角的余弦函数公式化简后,再分解因式;分母利用两角和的正弦函数公式及特殊角的三角函数值化简后,提取$\frac{\sqrt{2}}{2}$,约分后即可求出sinα+cosα的值,再求出-(cosα+sinβ)的值即可.
解答 解:∵$\frac{cos(π-2α)}{sin(α-\frac{π}{4})}=\frac{-cos2α}{sin(α-\frac{π}{4})}$=$\frac{si{n}^{2}α-co{s}^{2}α}{\frac{\sqrt{2}}{2}(sinα-cosα)}$
=$\frac{(sinα+cosα)(sinα-cosα)}{\frac{\sqrt{2}}{2}(sinα-cosα)}$
=$\sqrt{2}(sinα+cosα)$,
又$\frac{{cos({π-2α})}}{{sin({α-\frac{π}{4}})}}=-\frac{{\sqrt{2}}}{2}$,
∴$\sqrt{2}(sinα+cosα)$=$-\frac{\sqrt{2}}{2}$,
解得:sinα+cosα=-$\frac{1}{2}$.
∴-(cosα+sinα)=$\frac{1}{2}$
故选:C.
点评 本题考查了诱导公式,二倍角的余弦函数公式,两角和与差的正弦函数公式及特殊角的三角函数值,熟练掌握三角函数的恒等变换公式是解本题的关键,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | {x|-2<x<1} | B. | {x|x<-2} | C. | {x|x<1} | D. | {x|x<2} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $y={x^{\frac{2}{3}}}$ | B. | $y={(\frac{1}{2})^x}$ | C. | y=lnx | D. | y=x2+2x+1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com