精英家教网 > 高中数学 > 题目详情
8.下列函数在(0,+∞)上是增函数并且是定义域上的偶函数的是(  )
A.$y={x^{\frac{2}{3}}}$B.$y={(\frac{1}{2})^x}$C.y=lnxD.y=x2+2x+1

分析 由指数函数和对数函数不具奇偶性,可判断B,C不正确;根据二次函数的图象和性质,分析出函数的对称轴,进而可判断D的真假,分析y=${x}^{\frac{2}{3}}$的单调性和奇偶性可得答案.

解答 解:y=($\frac{1}{2}$)x与y=lnx不具有奇偶性,排除B,C;
又y=x2+2x+1对称轴为x=-1,不是偶函数,排除D;
y=${x}^{\frac{2}{3}}$在(0,+∞)上是增函数且在定义域R上是偶函数,
故选:A.

点评 本题考查的知识点是函数奇偶性与单调性,其中熟练掌握基本初等函数的单调性和奇偶性是解答本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.若关于x的不等式|x+a|≤b的解集为[-6,2].
(1)求实数a,b的值;
(2)若实数m,n满足|am+n|<$\frac{1}{3}$,|m-bn|<$\frac{1}{6}$,求证:|n|<$\frac{2}{27}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数y=${(\frac{1}{3})^{2x-{x^2}}}$的值域为(  )
A.[3,+∞)B.(0,3]C.$[\frac{1}{3},+∞)$D.$(0,\frac{1}{3}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设P为△ABC所在平面内一点,且2$\overrightarrow{PA}$+2$\overrightarrow{PB}$+$\overrightarrow{PC}$=$\overrightarrow{0}$,则△PAC的面积与△ABC的面积之比等于(  )
A.$\frac{1}{4}$B.$\frac{2}{5}$C.$\frac{1}{5}$D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.若向量$\overrightarrow{a}$=$({\sqrt{3}cosωx,sinωx})$,$\overrightarrow{b}$=(sinωx,0),其中ω>0,记函数f(x)=($\overrightarrow{a}$+$\overrightarrow{b}$)•$\overline{b}$-$\frac{1}{2}$.若函数f(x)的图象与直线y=m(m为常数)相切,并且切点的横坐标依次成公差是π的等差数列.
(Ⅰ)求f(x)的表达式及m的值;
(Ⅱ)将f(x)的图象向左平移$\frac{π}{6}$个单位,再将得到的图象上各点的纵坐标变为原来的2倍(横坐标不变)后得到y=g(x)的图象,求y=g(x)在$[0,\frac{π}{2}]$上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知集合A={x|m+1≤x≤2m-1},B={x|x<-2或x>5}
(1)若A⊆B,求实数m的取值范围的集合;
(2)若A∩B=∅,求实数m的取值范围的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知$\frac{{cos({π-2α})}}{{sin({α-\frac{π}{4}})}}=-\frac{{\sqrt{2}}}{2}$,则-(cosα+sinα)等于(  )
A.$-\frac{{\sqrt{7}}}{2}$B.$\frac{{\sqrt{7}}}{2}$C.$\frac{1}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.若函数f(x)=x2-bx+3.
(1)若函数f(x)为R上的偶函数,求b的值.
(2)若函数f(x)在(-∞,2]上单调递减,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.用二分法求函数f(x)的一个零点,得到如下表的参考数据:
f(1)=-2f(1.5)=0.625
f(1.25)=-0.984f(1.375)=-0.260
f(1.438)=0.165f(1.4065)=-0.052
那么方程f(x)=0的一个近似解(精确到0.1)为(  )
A.1.2B.1.3C.1.4D.1.5

查看答案和解析>>

同步练习册答案