精英家教网 > 高中数学 > 题目详情
18.若关于x的不等式|x+a|≤b的解集为[-6,2].
(1)求实数a,b的值;
(2)若实数m,n满足|am+n|<$\frac{1}{3}$,|m-bn|<$\frac{1}{6}$,求证:|n|<$\frac{2}{27}$.

分析 (1)关于x的不等式|x+a|≤b的解集为[-b-a,b-a],利用条件建立方程组,即可求实数a,b的值;
(2)利用|n|=$\frac{1}{9}$|(2m+n)-(2m-8n)|≤$\frac{1}{9}$|2m+n|+2|m-4n|,即可证明结论.

解答 (1)解:关于x的不等式|x+a|≤b的解集为[-b-a,b-a],
∵关于x的不等式|x+a|≤b的解集为[-6,2],
∴$\left\{\begin{array}{l}{b-a=2}\\{-b-a=-6}\end{array}\right.$,∴a=2,b=4;
(2)证明:∵实数m,n满足|am+n|<$\frac{1}{3}$,|m-bn|<$\frac{1}{6}$,
∴|n|=$\frac{1}{9}$|(2m+n)-(2m-8n)|≤$\frac{1}{9}$|2m+n|+2|m-4n|<$\frac{1}{9}(\frac{1}{3}+\frac{1}{3})$=$\frac{2}{27}$.

点评 本题考查绝对值不等式的解法,考查三角不等式的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=x|x-2|.
(1)作出函数f(x)=x|x-2|的大致图象;
(2)若方程f(x)-k=0有三个解,求实数k的取值范围.
(3)若x∈(0,m](m>0),求函数y=f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知f($\frac{2}{x}$+1)=lgx,则函数f(x)的解析式为(  )
A.f(x)=$\frac{2}{x-1}$B.f(x)=lg$\frac{2}{x-1}$C.f(x)=lg($\frac{2}{x}$+1)D.f(x)=lg(x-1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,正方形ABCD所在平面与三角形CDE所在平面相交于CD,AE⊥平面CDE,且AE=1,AB=2.
(Ⅰ)求证:AB⊥平面ADE;
(Ⅱ)求凸多面体ABCDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知a,b∈R,且$\frac{a}{1-i}+\frac{b}{2-i}=\frac{1}{3-i}$,则数列{an+b}前100项的和为-910.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=lnx+$\frac{ax}{x-1}$
(1)若函数有两个极值点,求实数a的取值范围;
(2)讨论f(x)的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知集合M={x|x2<4},N={x|x<1},则M∩N=(  )
A.{x|-2<x<1}B.{x|x<-2}C.{x|x<1}D.{x|x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知直线l1:2ax+y-1=0,l2:ax+(a-1)y+1=0,
(1)若l1⊥l2,求实数a的值;
(2)若l1∥l2时,求直线l1与l2之间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列函数在(0,+∞)上是增函数并且是定义域上的偶函数的是(  )
A.$y={x^{\frac{2}{3}}}$B.$y={(\frac{1}{2})^x}$C.y=lnxD.y=x2+2x+1

查看答案和解析>>

同步练习册答案