分析 (Ⅰ)推导出AE⊥CD,CD⊥AD,从而CD⊥平面ADE,再由AB∥CD,能证明AB⊥平面ADE.
(Ⅱ)凸多面体ABCDE的体积V=VB-CDE+VB-ADE,由此能求出结果.
解答 证明:(Ⅰ)∵AE⊥平面CDE,CD?平面CDE,![]()
∴AE⊥CD,
又在正方形ABCD中,CD⊥AD,AE∩AD=A,
∴CD⊥平面ADE,
又在正方形ABCD中,AB∥CD,
∴AB⊥平面ADE.…(6分)
解:(Ⅱ)连接BD,设B到平面CDE的距离为h,
∵AB∥CD,CD?平面CDE,
∴AB∥平面CDE,又AE⊥平面CDE,
∴h=AE=1,又${S}_{△CDE}=\frac{1}{2}CD×DE=\frac{1}{2}×2×\sqrt{4-1}$=$\sqrt{3}$,
∴${V}_{B-CDE}=\frac{1}{3}×\sqrt{3}×1$=$\frac{\sqrt{3}}{3}$,
又${V}_{B-ADE}=\frac{1}{3}×{S}_{△ADE}×AB$=$\frac{1}{3}×\frac{1}{2}×1×\sqrt{3}×2$=$\frac{\sqrt{3}}{3}$,
∴凸多面体ABCDE的体积V=VB-CDE+VB-ADE=$\frac{2\sqrt{3}}{3}$.…(12分)
点评 本题考查线面垂直的证明,考查多面体的体积的求法,是中档题,注意空间思维能力的培养.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{3}$ | B. | $\frac{1}{3}$ | C. | 9 | D. | $\frac{1}{9}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 30° | B. | 45° | C. | 60° | D. | 90° |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 2 | C. | 9 | D. | 10 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{4}$ | B. | $\frac{2}{5}$ | C. | $\frac{1}{5}$ | D. | 不确定 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com