精英家教网 > 高中数学 > 题目详情
11.如图,正方体ABCD-A1B1C1D1中,E、F分别为棱DD1和BC中点G为棱A1B1上任意一点,则直线AE与直线FG所成的角为(  )
A.30°B.45°C.60°D.90°

分析 如图所示,建立空间直角坐标系.不妨设棱长AB=2,计算$\overrightarrow{AE}$•$\overrightarrow{FG}$,即可得出.

解答 解:如图所示,建立空间直角坐标系.
不妨时棱长AB=2,则D(0,0,0),A(2,0,0),E(0,0,1),
F(1,2,0),G(2,t,2),t∈[0,2].
$\overrightarrow{AE}$=(-2,0,1),$\overrightarrow{FG}$=(1,t-2,2),
则$\overrightarrow{AE}$•$\overrightarrow{FG}$=-2+2=0,
∴$\overrightarrow{AE}$⊥$\overrightarrow{FG}$,
∴直线AE与直线FG所成的角为90°
故选:D.

点评 本题考查了异面直线所成的角、向量垂直与数量积的关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.函数y=loga(x-2)的图象经过一个定点,该定点的坐标为(3,0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设x>0,y>0,且x+y=18,则xy的最大值为81.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数f(x)=2-log2x的零点是(  )
A.(1,0)B.1C.(4,0)D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,正方形ABCD所在平面与三角形CDE所在平面相交于CD,AE⊥平面CDE,且AE=1,AB=2.
(Ⅰ)求证:AB⊥平面ADE;
(Ⅱ)求凸多面体ABCDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,已知P(x0,y0)是椭圆C:$\frac{x^2}{4}+{y^2}$=1上一点,过原点的斜率分别为k1,k2的两条直线与圆(x-x02+(y-y02=$\frac{4}{5}$均相切,且交椭圆于A,B两点.
(1)求证:k1k2=-$\frac{1}{4}$;
(2)求|OA|•|OB|得最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=lnx+$\frac{ax}{x-1}$
(1)若函数有两个极值点,求实数a的取值范围;
(2)讨论f(x)的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知a=log0.53,b=20.5,c=0.50.3,则a,b,c的大小关系是a<c<b.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设△ABC中,角A,B,C的对边分别为a、b、c,且2sinA=sinB+sinC,a=2,则△ABC面积的最大值为$\sqrt{3}$.

查看答案和解析>>

同步练习册答案