精英家教网 > 高中数学 > 题目详情
19.函数f(x)=2-log2x的零点是(  )
A.(1,0)B.1C.(4,0)D.4

分析 函数的零点是函数值为0时自变量的取值,故可令函数值为0,解出此时自变量的值,故令f(x)=2-log2x=0,解出其根即为所求的零点,再对照四个选项找出正确选项.

解答 解:由题意令f(x)=2-log2x=0,得log2x=2,得x=22=4
所以函数f(x)=2-log2x的零点是x=4
故选D

点评 本题考查函数的零点,解题的关键是掌握理解函数零点的定义以及函数的零点与方程的根的对应关系,将求函数零点的问题转化为求方程根的问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知正数x,y满足$\frac{2}{x}+\frac{1}{y}=1$,若x+y+a>0恒成立,则实数a的取值范围是(-3-2$\sqrt{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数f(x)=log2(4x-x2)的单调递减区间是(  )
A.(-∞,0)∪(4,+∞)B.(0,4)C.(-∞,2)∪(4,+∞)D.(2,4)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若cos(α+45°)=$\frac{1}{3}$,α是第三象限角,则sin(α+45°)=-$\frac{2\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列结论不正确的是(  )
A.0∈NB.$\frac{1}{2}$∈QC.$\sqrt{2}$∉RD.-1∈Z

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.集合A={x|-5<x<1},B={x|-2<x<8},C={x|x<a},全集为实数集R
(1)求A∪B,(∁RA)∩B;
(2)若A∩B⊆C,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图,正方体ABCD-A1B1C1D1中,E、F分别为棱DD1和BC中点G为棱A1B1上任意一点,则直线AE与直线FG所成的角为(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图平行四边形ABCD中,∠DAB=60°,AB=2,AD=2,M为CD边的中点,沿BM将△CBM折起使得平面BMC⊥平面ABMD.

(1)求四棱锥C-ADMB的体积;
(2)求折后直线AB与平面AMC所成的角的正弦.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=lg(x2+ax-a-1),给出下列命题:
①函数f(x)有最小值;
②当a=0时,函数f(x)的值域为R;
③若函数f(x)在区间(-∞,2]上单调递减,则实数a的取值范围是a≤-4.
其中正确的命题是②.

查看答案和解析>>

同步练习册答案