精英家教网 > 高中数学 > 题目详情
4.集合A={x|-5<x<1},B={x|-2<x<8},C={x|x<a},全集为实数集R
(1)求A∪B,(∁RA)∩B;
(2)若A∩B⊆C,求实数a的取值范围.

分析 (1)利用A={x|-5<x<1},B={x|-2<x<8},由此能求出A∪B和(∁RA)∩B.
(2)求出A∩B,利用A∩B⊆C,求实数a的取值范围.

解答 解:(1)∵A={x|-5<x<1},B={x|-2<x<8},
∴A∪B={x|-5<x<8},
(∁RA)∩B={x|x≤-5或x≥1}∩{x|-2<x<8}={x|1≤x<8}.
(2)∵A={x|-5<x<1},B={x|-2<x<8},
∴A∩B={x|-2<x<1},
∵A∩B⊆C,C={x|x<a},
∴a≥1.

点评 本题考查集合的交、并、补集的运算,考查集合的关系,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.圆x2+y2-2x-4y+1=0的圆心到直线ax+y-1=0的距离为1,则a=(  )
A.-$\frac{4}{3}$B.-$\frac{3}{4}$C.0D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知向量$\overrightarrow{a}$=(2,-1,2),$\overrightarrow{b}$=(-4,2,m),且$\overrightarrow{a}$∥$\overrightarrow{b}$,则m的值为-4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.记min{p,q}=$\left\{\begin{array}{l}{p(p≤q)}\\{q(p>q)}\end{array}\right.$,若函数f(x)=min{3+log${\;}_{\frac{1}{4}}$x,log2x}
(1)用分段函数形式写出函数f(x)的解析式;
(2)求不等式组0<f(x)<2的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数f(x)=2-log2x的零点是(  )
A.(1,0)B.1C.(4,0)D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=$\frac{b}{x-a}$的图象过点A(0,$\frac{3}{2}$),B(3,3)
(1)求函数f(x)的解析式;
(2)判断函数f(x)在(2,+∞)上的单调性,并用单调性的定义加以证明;
(3)若m,n∈(2,+∞)且函数f(x)在[m,n]上的值域为[1,3],求m+n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,已知P(x0,y0)是椭圆C:$\frac{x^2}{4}+{y^2}$=1上一点,过原点的斜率分别为k1,k2的两条直线与圆(x-x02+(y-y02=$\frac{4}{5}$均相切,且交椭圆于A,B两点.
(1)求证:k1k2=-$\frac{1}{4}$;
(2)求|OA|•|OB|得最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在△ABC中,角A,B,C的对边分别是a,b,c,若a.b.c成等比数列,且2c-4a=0,则cosB=(  )
A.$\frac{1}{4}$B.$\frac{3}{4}$C.$\frac{\sqrt{2}}{4}$D.$\frac{\sqrt{2}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.将函数$f(x)=cos(2x-\frac{π}{6})$的图象向右平移$\frac{π}{12}$个单位长度后,所得图象的一条对称轴方程可以是(  )
A.$x=\frac{π}{6}$B.$x=\frac{π}{4}$C.$x=\frac{π}{3}$D.$x=\frac{π}{12}$

查看答案和解析>>

同步练习册答案