精英家教网 > 高中数学 > 题目详情
15.已知向量$\overrightarrow{a}$=(2,-1,2),$\overrightarrow{b}$=(-4,2,m),且$\overrightarrow{a}$∥$\overrightarrow{b}$,则m的值为-4.

分析 利用向量平行的性质直接求解.

解答 解:∵向量$\overrightarrow{a}$=(2,-1,2),$\overrightarrow{b}$=(-4,2,m),且$\overrightarrow{a}$∥$\overrightarrow{b}$,
∴$\frac{-4}{2}=\frac{2}{-1}=\frac{m}{2}$,
解得m=-4.
故答案为:-4.

点评 本题考查实数值的求法,是基础题,解题时要认真审题,注意向量平行的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知某路段最高限速60km/h,电子监控测得连续6辆汽车的速度用茎叶图表示如下(单位:km/h).若从中任取2辆,则恰好有1辆汽车超速的概率为(  )
A.$\frac{4}{15}$B.$\frac{2}{5}$C.$\frac{8}{15}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=log3x.
(1)求f(45)-f(5)的值;
(2)若函数y=g(x)(x∈R)是奇函数,当x>0时,g(x)=f(x),求函数 y=g(x)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设函数f(x)=x3+ax2+bx+c的图象如图所示,且与y=0在原点相切,若函数的极小值为-4.
(1)求a,b,c的值;
(2)求函数的递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数f(x)=log2(4x-x2)的单调递减区间是(  )
A.(-∞,0)∪(4,+∞)B.(0,4)C.(-∞,2)∪(4,+∞)D.(2,4)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.?x∈R,x2-x+$\frac{1}{4}$≥0的否定是?x0∈R,x${\;}_{0}^{2}$-x0+$\frac{1}{4}$<0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若cos(α+45°)=$\frac{1}{3}$,α是第三象限角,则sin(α+45°)=-$\frac{2\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.集合A={x|-5<x<1},B={x|-2<x<8},C={x|x<a},全集为实数集R
(1)求A∪B,(∁RA)∩B;
(2)若A∩B⊆C,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知顶点在单位圆上的△ABC中,角A、B、C所对的边分别为a、b、c,且b2+c2=a2+bc.
(1)求角A的大小;
(2)若b2+c2=4,求△ABC的面积.

查看答案和解析>>

同步练习册答案