分析 根据如果x2+ax-a-1<0有解,可判断函数f(x)=lg(x2+ax-a-1)(a∈R),的值域为R,无最小值,
②当a=0时求出值域为R,③运用$\left\{\begin{array}{l}{-\frac{a}{2}≤2}\\{4+2a-a-1>0}\end{array}\right.$求解即可.
解答 解:∵函数f(x)=lg(x2+ax-a-1)(a∈R),
∴①如果x2+ax-a-1<0有解,
则函数f(x)=lg(x2+ax-a-1)(a∈R),的值域为R,无最小值,故①不正确,
②当a=0时,函数f(x)=lg(x2-1)(a∈R),定义域为(-∞,-1)∪(1,+∞),值域为R,
故②正确.
③若f(x)在区间[2,+∞)上是增函数,则$\left\{\begin{array}{l}{-\frac{a}{2}≤2}\\{4+2a-a-1>0}\end{array}\right.$解得:a>-3,
故③不正确,
故答案为:②
点评 本题考查对数函数的性质,涉及二次函数的性质和反函数,属中档题.
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $x=\frac{π}{6}$ | B. | $x=\frac{π}{4}$ | C. | $x=\frac{π}{3}$ | D. | $x=\frac{π}{12}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{8}-\frac{{3\sqrt{3}}}{8}i$ | B. | $\frac{1}{8}+\frac{{3\sqrt{3}}}{8}i$ | C. | $\frac{1}{2}-\frac{{\sqrt{3}}}{2}i$ | D. | $\frac{1}{2}+\frac{{\sqrt{3}}}{2}i$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 26 | B. | 21 | C. | 18 | D. | 16 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com