| A. | 26 | B. | 21 | C. | 18 | D. | 16 |
分析 由双曲线方程求得a=4,由双曲线的定义可得 AF2+BF2 =21,△ABF2的周长是( AF1 +AF2 )+( BF1+BF2 )=(AF2+BF2 )+AB,计算可得答案.
解答 解:由题意可得2a=8,由双曲线的定义可得
AF2-AF1=2a,BF2 -BF1=2a,
∴AF2+BF2 -AB=4a=16,即AF2+BF2 -5=16,AF2+BF2 =21.
△ABF2(F2为右焦点)的周长是
( AF1 +AF2 )+( BF1+BF2 )=(AF2+BF2 )+AB=21+5=26.
故选A.
点评 本题考查双曲线的定义和双曲线的标准方程,以及双曲线的简单性质的应用,求出AF2+BF2 =21是解题的关键.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\frac{{\sqrt{2}}}{2}$ | C. | 0 | D. | $-\frac{{\sqrt{2}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com