分析 (Ⅰ)由条件利用绝对值的意义求得不等式f(x)>4的解集.
(Ⅱ)f(x)≥|x-2|的解集包含[$\frac{1}{2}$,2],即为a|x-1|≥3-3x对x∈[$\frac{1}{2}$,2]恒成立,分类解得即可.
解答 解:(Ⅰ)当a=1时,f(x)=|2x-1|+|x-1|=$\left\{\begin{array}{l}{-3x+2,x<\frac{1}{2}}\\{x,\frac{1}{2}≤x≤1}\\{3x-2,x>1}\end{array}\right.$,
∵f(x)≥4,
∴$\left\{\begin{array}{l}{-3x+2≥4}\\{x<\frac{1}{2}}\end{array}\right.$或$\left\{\begin{array}{l}{3x-2≥4}\\{x>1}\end{array}\right.$,
解得x≤-$\frac{2}{3}$或x≥2,
故不等式的解集为(-∞,-$\frac{2}{3}$]∪[2,+∞).
(Ⅱ)∵f(x)≥|x-2|的解集包含[$\frac{1}{2}$,2],
∴a|x-1|≥3-3x对x∈[$\frac{1}{2}$,2]恒成立
当$\frac{1}{2}$≤x<1时,a(1-x)≥3-3x,
解得a≥3,
当1≤x≤2时,a(x-1)≥3-3x,
解得a≥-3,
综上:a≥3.
点评 本题主要考查绝对值的意义,绝对值不等式的解法,函数的恒成立问题,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 26 | B. | 21 | C. | 18 | D. | 16 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com