精英家教网 > 高中数学 > 题目详情
2.命题“?n∈N*,f(n)∈N*且f(n)≤n”的否定形式是?n0∈N*,f(n0)∉N*或f(n0)>n0

分析 根据全称命题的否定是特称命题进行求解即可.

解答 解:命题是全称命题,
则命题的否定是:?n0∈N*,f(n0)∉N*或f(n0)>n0
故答案为:?n0∈N*,f(n0)∉N*或f(n0)>n0

点评 本题主要考查含有量词的命题的否定,根据全称命题的否定是特称命题是解决本题的关键.比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.在平面直角坐标系xOy中,曲线y=x2-6x+5与坐标轴的交点都在圆C上.
(Ⅰ)求圆C的方程;
(Ⅱ)若圆C与直线x-y+a=0交于A,B两点,且CA⊥CB求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知集合A={x|m+1≤x≤2m-1},B={x|x<-2或x>5}
(1)若A⊆B,求实数m的取值范围的集合;
(2)若A∩B=∅,求实数m的取值范围的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知等差数列{an}的前n项和Sn满足S3=0,S5=-5.
(1)求{an}的通项公式;
(2)求a1+a4+a7+…+a3n+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.若函数f(x)=x2-bx+3.
(1)若函数f(x)为R上的偶函数,求b的值.
(2)若函数f(x)在(-∞,2]上单调递减,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=sin2x+2$\sqrt{3}$sin(x+$\frac{π}{4}$)cos(x-$\frac{π}{4}$)-cos2x-$\sqrt{3}$.
(1)求函数f(x)的单调递减区间;
(2)求函数f(x)在[-$\frac{π}{12}$,$\frac{25}{36}$π]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=|2x-1|+a|x-1|
(I)当a=1时,解关于x的不等式f(x)≥4
(II)若f(x)≥|x-2|的解集包含[$\frac{1}{2}$,2],求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某厂生产某种产品的年固定成本为250万元,每生产x千件,需另投入成本C(x),当年产量不足80千件时,C(x)=$\frac{1}{3}$x2+10x(万元);当年产量不小于80千件时C(x)=51x+$\frac{100000}{x}$-1450(万元),通过市场分析,若每件售价为500元时,该厂本年内生产该商品能全部销售完.
(1)写出年利润L(万元)关于年产量x(千件)的函数解析式;
(2)年产量为多少千件时,该厂在这一商品的生产中所获的利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在△ABC中,角A,B,C的对边分别为a,b,c,已知ccosB=(2a-b)cosC.
(1)求角C的大小;
(2)若c=2,△ABC的周长为2$\sqrt{3}$+2,求△ABC的面积.

查看答案和解析>>

同步练习册答案