精英家教网 > 高中数学 > 题目详情
13.已知集合A={x|m+1≤x≤2m-1},B={x|x<-2或x>5}
(1)若A⊆B,求实数m的取值范围的集合;
(2)若A∩B=∅,求实数m的取值范围的集合.

分析 (1)由A⊆B,分A=∅和A≠∅,两种情况分类讨论,能求出实数m的取值范围的集合.
(2)由A∩B=∅,分A=∅和A≠∅,两种情况分类讨论,能求出实数m的取值范围的集合.

解答 解:(1)∵集合A={x|m+1≤x≤2m-1},B={x|x<-2或x>5},A⊆B,
∴当A=∅时,m+1>2m-1,解得m<2,
当A≠∅时,$\left\{\begin{array}{l}{m+1≤2m-1}\\{m+1>5或2m-1<-2}\end{array}\right.$,解得m>4.
∴实数m的取值范围的集合为{m|m<2或m>4}.
(2)∵A={x|m+1≤x≤2m-1},B={x|x<-2或x>5},A∩B=∅,
∴当A=∅时,m+1>2m-1,解得m<2,
当A≠∅时,$\left\{\begin{array}{l}{m+1≤2m-1}\\{2m-1≤5}\\{m+1≥-2}\end{array}\right.$,解得2≤m≤3.
∴实数m的取值范围的集合为{m|m≤3}.

点评 本题考查实数的取值范围的求法,是基础题,解题时要认真审题,注意交集、子集的定义的合理运用,易错点是容易忽视空集的情况.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=lnx+$\frac{ax}{x-1}$
(1)若函数有两个极值点,求实数a的取值范围;
(2)讨论f(x)的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.命题p:?x∈R,x2-x+4>0的否定¬p为?x0∈R,x${\;}_{0}^{2}$-x0+4≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设△ABC中,角A,B,C的对边分别为a、b、c,且2sinA=sinB+sinC,a=2,则△ABC面积的最大值为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列函数在(0,+∞)上是增函数并且是定义域上的偶函数的是(  )
A.$y={x^{\frac{2}{3}}}$B.$y={(\frac{1}{2})^x}$C.y=lnxD.y=x2+2x+1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.计算$({\frac{1}{2}-\frac{{\sqrt{3}}}{2}i}){({\frac{1}{2}+\frac{{\sqrt{3}}}{2}i})^2}$=(  )
A.$\frac{1}{8}-\frac{{3\sqrt{3}}}{8}i$B.$\frac{1}{8}+\frac{{3\sqrt{3}}}{8}i$C.$\frac{1}{2}-\frac{{\sqrt{3}}}{2}i$D.$\frac{1}{2}+\frac{{\sqrt{3}}}{2}i$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知椭圆具有如下性质:若椭圆的方程为$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0),则椭圆上一点A(x0,y0)处的切线方程为$\frac{{{x_0}x}}{a^2}+\frac{{{y_0}y}}{b^2}$=1,试运用该性质解决以下问题:椭圆C1:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0),其焦距为2,且过点$(1,\frac{{\sqrt{2}}}{2})$.点B为椭圆C1在第一象限中的任意一点,过B作C1的切线l,l分别与x轴和y轴的正半轴交于C,D两点,则△OCD面积的最小值为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.命题“?n∈N*,f(n)∈N*且f(n)≤n”的否定形式是?n0∈N*,f(n0)∉N*或f(n0)>n0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设函数f(x)=x2-2|x|-1(-3≤x≤3),
(1)画出这个函数的图象;
(2)指出函数f(x)的单调区间,并说明在各个单调区间上f(x)是增函数还是减函数;
(3)求函数的值域.

查看答案和解析>>

同步练习册答案