精英家教网 > 高中数学 > 题目详情
12.在△ABC中,角A,B,C的对边分别为a,b,c,已知ccosB=(2a-b)cosC.
(1)求角C的大小;
(2)若c=2,△ABC的周长为2$\sqrt{3}$+2,求△ABC的面积.

分析 (1)根据正弦定理与两角和的正弦公式,化简题中的等式可得sin(B+C)-2sinAcosC,结合三角函数的诱导公式算出cosC=$\frac{1}{2}$,可得角C的大小;
(2)由余弦定理可得ab的值,利用三角形面积公式即可求解.

解答 解:(1)∵在△ABC中,ccosB=(2a-b)cosC,
∴由正弦定理,可得sinCcosB=(2sinA-sinB)cosC,
即sinCcosB+sinBcosC=2sinAcosC,
∴sin(B+C)=2sinAcosC,
∵△ABC中,sin(B+C)=sin(π-A)=sinA>0,
∴sinA=2sinAcosC,即sinA(1-2cosC)=0,可得cosC=$\frac{1}{2}$.
又∵C是三角形的内角,
∴C=$\frac{π}{3}$.
(2)∵C=$\frac{π}{3}$,a+b+c=2$\sqrt{3}$+2,c=2,可得:a+b=2$\sqrt{3}$,
∴由余弦定理可得:22=a2+b2-2abcosC=a2+b2-ab=(a+b)2-3ab=12-3ab,解得:ab=$\frac{8}{3}$,
∴S△ABC=$\frac{1}{2}$absinC=$\frac{1}{2}$×$\frac{8}{3}$×$\frac{\sqrt{3}}{2}$=$\frac{2\sqrt{3}}{3}$.

点评 本题求角C的大小并依此求三角形面积,着重考查了正余弦定理、两角和的正弦公式三角函数的图象性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.命题“?n∈N*,f(n)∈N*且f(n)≤n”的否定形式是?n0∈N*,f(n0)∉N*或f(n0)>n0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设函数f(x)=x2-2|x|-1(-3≤x≤3),
(1)画出这个函数的图象;
(2)指出函数f(x)的单调区间,并说明在各个单调区间上f(x)是增函数还是减函数;
(3)求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.(理)已知平面α和平面β的法向量分别为$\overrightarrow{a}$=(1,1,2),$\overrightarrow{b}$=(x,-2,3),且α⊥β,则x=-4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.当x∈[0,5]时,函数f(x)=3x2-4x+c的值域为(  )
A.[f(0),f(5)]B.[f(0),f($\frac{2}{3}$)]C.[c,f(5)]D.[f$\frac{2}{3}$),f(5)]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.(1)若f(x+1)=2x2+1,求f(x)的表达式;
(2)若函数f(x)=$\frac{x}{ax+b}$,f(2)=1,又方程f(x)=x有唯一解,求f(x)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.等差数列{an}的前n项和为Sn,若a5+a6=18,则S10的值为(  )
A.35B.54C.72D.90

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知国家某5A级大型景区对拥挤等级与每日游客数量n(单位:百人)的关系有如下规定:当n∈[0,100)时,拥挤等级为“优”;当n∈[100,200)时,拥挤等级为“良”;当n∈[200,300)时,拥挤等级为“拥挤”;当n≥300时,拥挤等级为“严重拥挤”.该景区对6月份的游客数量作出如图的统计数据:
(Ⅰ)下面是根据统计数据得到的频率分布表,求出a,b的值,并估计该景区6月份游客人数的平均值(同一组中的数据用该组区间的中点值作代表);
游客数量
(单位:百人)
[0,100)[100,200)[200,300)[300,400]
天数a1041
频率b$\frac{1}{3}$$\frac{2}{15}$$\frac{1}{30}$
(Ⅱ)某人选择在6月1日至6月5日这5天中任选2天到该景区游玩,求他这2天遇到的游客拥挤等级均为“优”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在△ABC中,三个内角A,B,C的对边分别是a,b,c,若b2+c2-a2=bc,则角A等于(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

同步练习册答案