精英家教网 > 高中数学 > 题目详情
8.如图平行四边形ABCD中,∠DAB=60°,AB=2,AD=2,M为CD边的中点,沿BM将△CBM折起使得平面BMC⊥平面ABMD.

(1)求四棱锥C-ADMB的体积;
(2)求折后直线AB与平面AMC所成的角的正弦.

分析 (1)由已知得△CMB是等边三角形,取MB的中点O,则CO⊥MB,又平面BMC⊥平面ABMD,CO=$\frac{\sqrt{3}}{2}$,求出底面梯形的面积,再利用棱锥的体积公式解答;
(2)利用面面垂直的性质和判定,找到折后直线AB与面AMC所成的角的平面角,然后求正弦值即可.

解答 解:(1)由已知∠DAB=60°,AB=AD=2,
M为边CD的中点,
∴△CMB是等边三角形,
取MB的中点O,则CO⊥MB,
又平面BMC⊥平面ABMD于MB,
则CO⊥平面ABMD,且CO=$\frac{\sqrt{3}}{2}$.
${S}_{梯形ABCM}=\frac{AB+CM}{2}×CO$=$\frac{3}{2}×\frac{\sqrt{3}}{2}$=$\frac{3\sqrt{3}}{4}$,
∴V四棱锥C-ADMB=$\frac{1}{3}×\frac{3\sqrt{3}}{4}×\frac{\sqrt{3}}{2}=\frac{3}{8}$;
(2)∵∠DAB=60°,AB=AD=2,
M为边CD的中点,
∴AM=2$\sqrt{3}$,BM=2,
∴AM⊥BM,
又平面BMC⊥平面ABMD交线为BM,
∴AM⊥平面CMB,
∴平面AMC⊥平面BMC于MC,
由△CMB是等边三角形,取CM的中点E,连接BE,则BE⊥CM,
∴BE⊥平面AMC,连接EA,则∠BAE是直线AB与平面AMC所成的角,
∴sin∠BAE=$\frac{BE}{AB}$=$\frac{\frac{\sqrt{3}}{2}}{2}$=$\frac{\sqrt{3}}{4}$.

点评 本题考查了折叠的问题,将平面图折叠得到立体图形,求几何体的体积及空间角,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=$\frac{6}{x-1}$,
(Ⅰ)判断函数f(x)在(1,+∞)上的单调性并用单调性的定义证明;
(Ⅱ)x∈[2,4],求函数f(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数f(x)=2-log2x的零点是(  )
A.(1,0)B.1C.(4,0)D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,已知P(x0,y0)是椭圆C:$\frac{x^2}{4}+{y^2}$=1上一点,过原点的斜率分别为k1,k2的两条直线与圆(x-x02+(y-y02=$\frac{4}{5}$均相切,且交椭圆于A,B两点.
(1)求证:k1k2=-$\frac{1}{4}$;
(2)求|OA|•|OB|得最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=lnx+$\frac{ax}{x-1}$
(1)若函数有两个极值点,求实数a的取值范围;
(2)讨论f(x)的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在△ABC中,角A,B,C的对边分别是a,b,c,若a.b.c成等比数列,且2c-4a=0,则cosB=(  )
A.$\frac{1}{4}$B.$\frac{3}{4}$C.$\frac{\sqrt{2}}{4}$D.$\frac{\sqrt{2}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知a=log0.53,b=20.5,c=0.50.3,则a,b,c的大小关系是a<c<b.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数y=f(x)的图象是如图的曲线ABC,其中A(1,3),B(2,1),C(3,2),则f[f(3)]的值为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.计算$({\frac{1}{2}-\frac{{\sqrt{3}}}{2}i}){({\frac{1}{2}+\frac{{\sqrt{3}}}{2}i})^2}$=(  )
A.$\frac{1}{8}-\frac{{3\sqrt{3}}}{8}i$B.$\frac{1}{8}+\frac{{3\sqrt{3}}}{8}i$C.$\frac{1}{2}-\frac{{\sqrt{3}}}{2}i$D.$\frac{1}{2}+\frac{{\sqrt{3}}}{2}i$

查看答案和解析>>

同步练习册答案