分析 (Ⅰ)根据函数单调性的定义证明函数的单调性即可;(Ⅱ)根据函数的单调性求出函数的最大值和最小值即可.
解答 解:(Ⅰ)函数f(x)在(1,+∞)上是减函数,证明如下:
设1<x1<x2,则x2-x1>0,x1-1>0,x2-1>0,
∴f(x1)-f(x2)=$\frac{6{(x}_{2}{-x}_{1})}{{(x}_{1}-1){(x}_{2}-1)}$>0,
∴f(x1)>f(x2),
∴f(x)在(1,+∞)递减;
(Ⅱ)由(Ⅰ)知函数f(x)在[2,4]上是减函数,
∴f(x)min=f(4)=2,f(x)max=f(2)=6.
点评 本题考查了通过定义证明函数的单调性以及求函数的最大值和最小值问题,是一道基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 30° | B. | 45° | C. | 60° | D. | 120° |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,0)∪(4,+∞) | B. | (0,4) | C. | (-∞,2)∪(4,+∞) | D. | (2,4) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com