精英家教网 > 高中数学 > 题目详情
19.函数y=${(\frac{1}{3})^{2x-{x^2}}}$的值域为(  )
A.[3,+∞)B.(0,3]C.$[\frac{1}{3},+∞)$D.$(0,\frac{1}{3}]$

分析 换元得出y=($\frac{1}{3}$)t,t≤1,根据指数函数的性质得出即可.

解答 解:∵函数y=${(\frac{1}{3})^{2x-{x^2}}}$
∴设t=-x2+2x,x∈R
得出t≤1
y=($\frac{1}{3}$)t,t≤1
根据指数函数的性质得出:值域为:[$\frac{1}{3}$,+∞)
故选:C.

点评 本题简单的考察了指数,二次函数的性质,换元法思想的运用,属于容易题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知f($\frac{2}{x}$+1)=lgx,则函数f(x)的解析式为(  )
A.f(x)=$\frac{2}{x-1}$B.f(x)=lg$\frac{2}{x-1}$C.f(x)=lg($\frac{2}{x}$+1)D.f(x)=lg(x-1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知集合M={x|x2<4},N={x|x<1},则M∩N=(  )
A.{x|-2<x<1}B.{x|x<-2}C.{x|x<1}D.{x|x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知直线l1:2ax+y-1=0,l2:ax+(a-1)y+1=0,
(1)若l1⊥l2,求实数a的值;
(2)若l1∥l2时,求直线l1与l2之间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,三棱柱ABC-A1B1C1中,侧面BB1C1C为菱形,AB⊥B1C.
(Ⅰ)证明:A1C1=AB1
(Ⅱ)若AC⊥AB1,∠BCC1=120°,AB=BC,求二面角A-A1B1-C1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.命题p:?x∈R,x2-x+4>0的否定¬p为?x0∈R,x${\;}_{0}^{2}$-x0+4≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知f(x)=2+log3x,x∈[1,9],g(x)=[f(x)]2+f(x2),
(1)求g(x)的定义域;
(2)求g(x)的最大值以及g(x)取最大值时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列函数在(0,+∞)上是增函数并且是定义域上的偶函数的是(  )
A.$y={x^{\frac{2}{3}}}$B.$y={(\frac{1}{2})^x}$C.y=lnxD.y=x2+2x+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.双曲线x2-$\frac{{y}^{2}}{{b}^{2}}$=1(b>0)的左、右焦点分别为F1、F2,直线l过F2且与双曲线交于A、B两点.
(1)若l的倾斜角为$\frac{π}{2}$,△F1AB是等边三角形,求双曲线的渐近线方程;
(2)设b=$\sqrt{3}$,若l的斜率存在,M为AB的中点,且$\overrightarrow{FM}$•$\overrightarrow{AB}$=0,求l的斜率.

查看答案和解析>>

同步练习册答案