精英家教网 > 高中数学 > 题目详情
11.已知f(x)=2+log3x,x∈[1,9],g(x)=[f(x)]2+f(x2),
(1)求g(x)的定义域;
(2)求g(x)的最大值以及g(x)取最大值时x的值.

分析 (1)要使函数g(x)=[f(x)]2+f(x2)有意义,必须满足$\left\{\begin{array}{l}{1≤{x}^{2}≤9}\\{1≤x≤3}\end{array}\right.$,解不等式即可得到所求定义域; 
(2)根据f(x)的定义域为[1,9],先求出g(x)的定义域为[1,3],然后利用二次函数的最值再求函数g(x)=[f(x)]2+f(x2)=(2+log3x)2+(2+log3x2)=(log3x+3)2-3的最大值.

解答 解:(1)f(x)的定义域为[1,9],
要使函数g(x)=[f(x)]2+f(x2)有意义,必须满足:
$\left\{\begin{array}{l}{1≤{x}^{2}≤9}\\{1≤x≤3}\end{array}\right.$ 可知1≤x≤3,
则g(x)的定义域为[1,3].
(2)由f(x)的定义域为[1,9]可得g(x)的定义域为[1,3],
又g(x)=(2+log3x)2+(2+log3x2)=(log3x+3)2-3,
∵1≤x≤3,∴0≤log3x≤1.
∴当x=3时,g(x)有最大值13.

点评 本题考查函数的最值的求法,根据f(x)的定义域先求出g(x)的定义域是正确解题的关键步骤.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{0.5}x,x>0}\\{{3}^{x},x≤0}\end{array}\right.$,则f[f(2)]=(  )
A.$\sqrt{3}$B.$\frac{1}{3}$C.9D.$\frac{1}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.如果函数f(x)=ax2+2x+a2-3在区间[2,4]上具有单调性,则实数a取值范围是$({-∞,-\frac{1}{2}}]∪[-\frac{1}{4},+∞]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数y=${(\frac{1}{3})^{2x-{x^2}}}$的值域为(  )
A.[3,+∞)B.(0,3]C.$[\frac{1}{3},+∞)$D.$(0,\frac{1}{3}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.双曲线与椭圆4x2+y2=64有公共的焦点,它们的离心率互为倒数,求双曲线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设P为△ABC所在平面内一点,且2$\overrightarrow{PA}$+2$\overrightarrow{PB}$+$\overrightarrow{PC}$=$\overrightarrow{0}$,则△PAC的面积与△ABC的面积之比等于(  )
A.$\frac{1}{4}$B.$\frac{2}{5}$C.$\frac{1}{5}$D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.若向量$\overrightarrow{a}$=$({\sqrt{3}cosωx,sinωx})$,$\overrightarrow{b}$=(sinωx,0),其中ω>0,记函数f(x)=($\overrightarrow{a}$+$\overrightarrow{b}$)•$\overline{b}$-$\frac{1}{2}$.若函数f(x)的图象与直线y=m(m为常数)相切,并且切点的横坐标依次成公差是π的等差数列.
(Ⅰ)求f(x)的表达式及m的值;
(Ⅱ)将f(x)的图象向左平移$\frac{π}{6}$个单位,再将得到的图象上各点的纵坐标变为原来的2倍(横坐标不变)后得到y=g(x)的图象,求y=g(x)在$[0,\frac{π}{2}]$上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知$\frac{{cos({π-2α})}}{{sin({α-\frac{π}{4}})}}=-\frac{{\sqrt{2}}}{2}$,则-(cosα+sinα)等于(  )
A.$-\frac{{\sqrt{7}}}{2}$B.$\frac{{\sqrt{7}}}{2}$C.$\frac{1}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.双曲线的离心率为2,则双曲线的两条渐近线所成的锐角是60°.

查看答案和解析>>

同步练习册答案