精英家教网 > 高中数学 > 题目详情

某商场销售某种商品的经验表明,该商品每日的销售量(单位:千克)与销售价格(单位:元/千克)满足关系式其中为常数。己知销售价格为5元/千克时,每日可售出该商品11千克.
(1)求的值;
(2)若该商品的成本为3元/千克,试确定销售价格的值,使商场每日销售该商品所获得的利润最大.

(1)(2)x=4时,利润最大值为42.

解析试题分析:(1)把(5,11)代入即可.(2)先求出函数f(x)的导函数,然后判断单调性,求出极大值也就是最大值.
(1)由x=5,y=11得
(2)由(1)知
设所获利润为,则

 
当3<x<4时,
当4<x<6时,
的极大值点,也是最大值点。
时,
考点:函数定义域、值域的对应关系;利用导数求最大值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数的图象上一点P(1,0),且在P点处的切线与直线平行.
(1)求函数的解析式;
(2)求函数在区间[0,t](0<t<3)上的最大值和最小值;
(3)在(1)的结论下,关于x的方程在区间[1,3]上恰有两个相异的实根,求实数c的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

,函数的最大值是14,求的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知是定义在区间上的奇函数,且,若时,有.
(1)解不等式:
(2)若不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知定义域为R的函数f(x)为奇函数,且满足f(x+2)=-f(x),当x∈[0,1]时,f(x)=2x-1.
(1)求f(x)在[-1,0)上的解析式;
(2)求f(24)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=x2-1,g(x)=
(1)求f[g(2)]和g[f(2)]的值;
(2)求f[g(x)]和g[f(x)]的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

规定[t]为不超过t的最大整数,例如[12.6]=12,[-3.5]=-4,对任意实数x,令f1(x)=[4x],g(x)=4x-[4x],进一步令f2(x)=f1[g(x)].
(1)若x=,分别求f1(x)和f2(x);
(2)若f1(x)=1,f2(x)=3同时满足,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)讨论函数的奇偶性;
(2)若函数上为减函数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若函数的图象切x轴于点(2,0),求a、b的值;
(2)设函数的图象上任意一点的切线斜率为k,试求的充要条件;
(3)若函数的图象上任意不同的两点的连线的斜率小于l,求证

查看答案和解析>>

同步练习册答案