精英家教网 > 高中数学 > 题目详情

已知是定义在区间上的奇函数,且,若时,有.
(1)解不等式:
(2)若不等式恒成立,求实数的取值范围.

(1);(2)的取值范围是.

解析试题分析:(1)先根据题中条件,令,结合函数的奇偶性得到,进而判断出函数在定义域内单调递增,从而由可得不等式组,从中求解即可得出的取值范围即不等式的解集;(2)先求出,进而依题中条件不等式的恒成立问题转化为关于的不等式恒成立问题,结合一次函数的图像与性质,进而得出不等式组,从中求解即可得到的取值范围.
(1)令则有,即
时,必有 在区间上是增函数          3分
      解之 
所求解集为                           6分
(2) 在区间上是增函数, 
又对于所有恒成立
,即时恒成立
,则有 
解之得,                 11分
的取值范围是                12分.
考点:1.函数的奇偶性;2.函数的单调性;3.一次函数的图像与性质;4.不等式的恒成立问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知为实数,
(1)若,求 上的最大值和最小值;
(2)若上都是递增的,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知
(1)判断的奇偶性;
(2)讨论的单调性;
(3)当时,恒成立,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

是否存在这样的实数a,使函数f(x)=x2+(3a-2)x+a-1在区间[-1,3]上恒有一个零点,且只有一个零点?若存在,求出a的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)的定义域为{x|x∈R,且x≠0},对定义域内的任意x1、x2,都有f(x1·x2)=f(x1)+f(x2),且当x>1时,f(x)>0.
(1)求证:f(x)是偶函数;
(2)求证:f(x)在(0,+∞)上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某商场销售某种商品的经验表明,该商品每日的销售量(单位:千克)与销售价格(单位:元/千克)满足关系式其中为常数。己知销售价格为5元/千克时,每日可售出该商品11千克.
(1)求的值;
(2)若该商品的成本为3元/千克,试确定销售价格的值,使商场每日销售该商品所获得的利润最大.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=2x,x∈R.当m取何值时方程|f(x)-2|=m有一个解?两个解?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

据环保部门测定,某处的污染指数与附近污染源的强度成正比,与到污染源距离的平方成反比,比例常数为.现已知相距18的A,B两家化工厂(污染源)的污染强度分别为,它们连线上任意一点C处的污染指数等于两化工厂对该处的污染指数之和.设).
(1)试将表示为的函数; (2)若,且时,取得最小值,试求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

函数的反函数       

查看答案和解析>>

同步练习册答案