精英家教网 > 高中数学 > 题目详情

,函数的最大值是14,求的值。

解析试题分析:先利用分类讨论思想对a分类再利用换元法将y变成,然后利用二次函数对称轴t=-1,所以在区间t上函数单调递增,即可确定f(x)max=由题得f(x)max=14,所以可以求出.
试题解析:令,则原函数化为  2分
①当时,  3分
此时上为增函数,所以  6分
所以  7分
②当时,  8分
此时上为增函数,所以  10分
所以  11分
综上  12分
考点:1,函数单调性 2,函数奇偶性.3,换元法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数,当时,恒有
(1)求证:是奇函数;
(2)如果为正实数,,并且,试求在区间[-2,6]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知为实数,
(1)若,求 上的最大值和最小值;
(2)若上都是递增的,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

函数.
(1)若,函数在区间上是单调递增函数,求实数的取值范围;
(2)设,若对任意恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知
(1)判断的奇偶性;
(2)讨论的单调性;
(3)当时,恒成立,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

是否存在这样的实数a,使函数f(x)=x2+(3a-2)x+a-1在区间[-1,3]上恒有一个零点,且只有一个零点?若存在,求出a的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某商场销售某种商品的经验表明,该商品每日的销售量(单位:千克)与销售价格(单位:元/千克)满足关系式其中为常数。己知销售价格为5元/千克时,每日可售出该商品11千克.
(1)求的值;
(2)若该商品的成本为3元/千克,试确定销售价格的值,使商场每日销售该商品所获得的利润最大.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知是二次函数,不等式的解集是(0,5),且在区间[-1,4]上的最大值是12.
(1)求f(x)的解析式;
(2)是否存在正整数m,使得方程在区间内有且只有两个不等的实数根?若存在,求出所有m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

若函数yf(x)的图象与函数的图象关于直线x-y=0对称,则f(x)=
__________________________________.

查看答案和解析>>

同步练习册答案