精英家教网 > 高中数学 > 题目详情

选修4—4:坐标系与参数方程

在直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为

(1)把的参数方程化为极坐标方程 ;

(2)求交点的极坐标(

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知向量$\overrightarrow a$=(1,2),$\overrightarrow b$=(-2,x).
(1)当$\overrightarrow{a}$⊥$\overrightarrow{b}$时,求x的值;
(2)当向量$\overrightarrow{a}$与(4$\overrightarrow{a}$+$\overrightarrow{b}$)的夹角是锐角,求|$\overrightarrow{b}$|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知定义在R上的奇函数f(x)和偶函数g(x)满足f(x)+g(x)=x2-2x-1,求函数f(x)和f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.不等式ax2+5x-4≥0无解,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.求下列函数的定义域.
(1)y=$\sqrt{x+8}+\sqrt{3-x}$;
(2)$y=\frac{1}{{1-\frac{1}{{1-\frac{1}{|x|-x}}}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.若二次函数f(x)=ax2+bx+c(a≠0)满足f(x+2)-f(x)=x,且f(0)=1
(Ⅰ)求f(x)的解析式;
(Ⅱ)若在区间[-1,1]上,不等式f(x)>2x+m恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.计算:设a、b、c是非零实数,求$\frac{ab}{|ab|}$+$\frac{bc}{|bc|}$+$\frac{ac}{|ac|}$+$\frac{abc}{|abc|}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在数列{an}中,a1=2,a2=2,an+2-an=1+(-1)n,n∈N*,则S60的值为(  )
A.990B.1000C.1100D.99

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设函数f′(3)=2,则$\underset{lim}{△x\stackrel{\;}{→}0}$$\frac{f(3+△x)-f(3)}{4△x}$等于$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案