精英家教网 > 高中数学 > 题目详情
(2007•闵行区一模)(文)已知△ABC顶点的直角坐标分别为A(a,4)、B(0,b)、C(c,0).
(1)若a=1,b=2,且
AB
AC
=0
;求c的值;
(2)若虚数x=a+i是实系数方程x2-6x+2c=0的根,且b=0,求sinA的值.
分析:(1)根据所给的三个点的坐标,写出两个向量的坐标,表示出两个向量的数量积,得到关于c的方程,解方程即可.
(2)x=a-i也是实系数方程x2-6x+2c=0的根,由韦达定理,得a=3,c=5,写出向量的坐标,求出两个向量的夹角余弦,根据同角的三角函数关系求出结果.
解答:解:(1)
AB
=(-1, -2)
AC
=(c-1, -4)
(2分)
由 
AB
AC
=1-c+8=0
,(4分)
解得 c=9(6分)
(2)x=a-i也是实系数方程x2-6x+2c=0的根,
由韦达定理,得a=3,c=5,(8分)
AB
=(-3, -4)
AC
=(2, -4)
(10分)
cosA=
AB
AC
|
AB
||
AC
|
=
-6+16
5•2
5
=
1
5
(12分)
sinA=
1-cos2A
=
1-
1
5
=
2
5
5
(14分)
点评:本题看出向量的数量积的运算和实系数一元二次方程的解的情况,本题解题的关键是对于实系数的一元二次方程求解时注意两个复根之间的关系是互为共轭复数.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2007•闵行区一模)已知数列{an}和{bn}的通项公式分别是an=
an2+2
bn2-n+3
bn=(1+
1
n
)bn
,其中a、b是实常数.若
lim
n→∞
an=2
lim
n→∞
bn=e
1
2
,且a,b,c成等比数列,则c的值是
1
4
1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•闵行区一模)已知函数f(x)=Asin(ωx+φ)+B(A>0,0<ω<2,|φ|<
π
2
)
的一系列对应值如下表:
x -
π
6
π
3
6
3
11π
6
3
17π
6
y -1 1 3 1 -1 1 3
(1)根据表格提供的数据求函数y=f(x)的解析式;
(2)(文)当x∈[0,2π]时,求方程f(x)=2B的解.
(3)(理)若对任意的实数a,函数y=f(kx)(k>0),x∈(a,a+
3
]
的图象与直线y=1有且仅有两个不同的交点,又当x∈[0,
π
3
]
时,方程f(kx)=m恰有两个不同的解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•闵行区一模)设等差数列{an}的前n项和为Sn,若a6+a14=20,则S19=
190
190

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•闵行区一模)不等式|2x-3|<5的解是
(-1,4)
(-1,4)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•闵行区一模)方程9x+3x-2=0的解是
0
0

查看答案和解析>>

同步练习册答案