精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
3
sin
ωx+φ
2
cos
ωx+φ
2
+sin2
ωx+φ
2
(ω>0,0<φ<
π
2
)的周期为π,且过点(
π
3
,1)
(1)求函数f(x)的表达式;
(2)求函数f(x)在区间[0,
π
2
]上的值域.
考点:三角函数中的恒等变换应用
专题:三角函数的图像与性质
分析:(1)利用两角和公式和二倍角公式对函数解析式化简整理,利用周期求得ω,利用已知点求得φ,得到函数解析式.
(2)利用x的范围确定2x+
π
6
的范围,进而利用三角函数的性质求得函数的值域.
解答: 解:(1)f(x)=
3
sin
ωx+φ
2
cos
ωx+φ
2
+sin2
ωx+φ
2

=
3
2
sin(ωx+φ)-
1
2
cos(ωx+φ)+
1
2

=sin(ωx+φ-
π
6
)+
1
2

T=
ω
=π,
∴ω=2,
∵函数图象过点(
π
3
,1),
∴f(
π
3
)=sin(2•
π
3
-
π
6
+φ)+
1
2
=1,即sin(
π
2
+φ)=cosφ=
1
2

∵0<φ<
π
2

∴φ=
π
3

∴f(x)=sin(2x+
π
6
)+
1
2

(2)∵x∈[0,
π
2
],
∴2x+
π
6
∈[
π
6
6
],
∴sin(2x+
π
6
)∈[-
1
2
,1],
∴0≤sin(2x+
π
6
)+
1
2
3
2

即函数f(x)在区间[0,
π
2
]上的值域为[0,
3
2
].
点评:本题主要考查了三角函数恒等变换的应用,三角函数图象与性质.要求学生对三角函数的图象能熟练掌握.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知复数z=
i
1+i
在复平面内对应的点z(x,y)位于(  )
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinα=
4
5
,α∈(
π
2
,π),cosβ=-
5
13
,β∈(π,
2
)求cos(α+β),sin(α-β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a∈R,函数f(x)=x|x-a|+2x.
(1)若a=2,求函数f(x)在区间[0,3]上的最大值;
(2)若a>2,写出函数f(x)的单调区间(不必证明);
(3)若存在a∈[-2,4],使得关于x的方程f(x)=t•f(a)有三个不相等的实数解,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

用五点作图法画出函数y=sin(2x+
π
4
)+1在一个周期内的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C过点p(0,2,)O(0,0),Q(4,0)三点:
(Ⅰ)求圆C的方程;
(Ⅱ)过点A(2,2)的直线l与圆C交于M,N两点,且|MN|=4,求直线l方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称可入肺颗粒物,2012年3月2日,国家环保部发布了新修订的《环境质量标准》,其中规定:居民区中的PM2.5年平均浓度不得超过35微克/立方米,PM2.5的24小时平均浓度不得超过75微克/立方米.某城市环保部门随机抽取了一居民区去年40天的PM2.5的24小时平均浓度的监测数据,数据统计如下:
组别 PM2.5(微克/立方米) 频数(天) 频率
第一组 (0,15] 4 0.1
第二组 (15,30] 12 0.3
第三组 (30,45] 8 0.2
第四组 (45,60] 8 0.2
第五组 (60,75] 4 0.1
第六组 (75,90] 4 0.1
(Ⅰ)求该样本的平均数的估计值,并根据样本估计总体的思想,从PM2.5的年平均浓度考虑,判断该居民区的环境是否需要改进,并说明理由;
(Ⅱ)从第五组和第六组的8天中任取2天,求取出2天的PM2.5的24小时平均浓度都符合《环境空气质量标》的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知M是椭圆
x2
4
+
y2
12
=1上在第一象限的点,A(2,0),B(0,2
3
)是椭圆两个顶点,求四边形OAMB的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a=
π
2
0
(-cosx)dx,则二项式(x2+
a
x
5的展开式中x的系数为
 

查看答案和解析>>

同步练习册答案