| A. | $\frac{2}{3}$ | B. | $\frac{8}{9}$ | C. | $\frac{1}{12}$ | D. | $\frac{1}{9}$ |
分析 由条件利用两角差的正切公式,求得tan(α+$\frac{π}{4}$)=tan[(α+β)-(β-$\frac{π}{4}$)]的值.
解答 解:∵tan(α+β)=$\frac{3}{7}$,tan(β-$\frac{π}{4}$)=-$\frac{1}{3}$,
则tan(α+$\frac{π}{4}$)=tan[(α+β)-(β-$\frac{π}{4}$)]=$\frac{tan(α+β)-tan(β-\frac{π}{4})}{1+tan(α+β)tan(β-\frac{π}{4})}$=$\frac{\frac{3}{7}+\frac{1}{3}}{1+\frac{3}{7}•(-\frac{1}{3})}$=$\frac{8}{9}$,
故选:B.
点评 本题主要考查两角差的正切公式的应用,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1+i | B. | -1-i | C. | i | D. | -i |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|-1≤x<3} | B. | {x|0<x≤1} | C. | {x|1≤x<3} | D. | {x|0≤x≤3} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 13 | B. | 8 | C. | 2$\sqrt{7}$ | D. | 2$\sqrt{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com