精英家教网 > 高中数学 > 题目详情
12.已知数列{an}满足a1=1,an+1-an=2,等比数列{bn}满足b1=a1,b4=a4+1.
(1)求数列{an},{bn}的通项公式;
(2)设cn=an+bn,求数列{cn}的前n项和Sn

分析 (1)由an+1-an=2,数列{an}是以1为首项,以2为公差的等差数列,由等比数列中公比为q,b4=b1•q3=8,求得q,根据等差和等比数列通项公式即可求得数列{an},{bn}的通项公式;
(2)由cn=an+bn=2n-1+2n-1,由等差数列和等比数列前n项和公式,采用分组求和的方法即可求得数列{cn}的前n项和Sn

解答 解:(1)由题意可知:an+1-an=2,
∴数列{an}是以1为首项,以2为公差的等差数列,
∴数列{an}的通项公式an=2n-1,
∴a4=7,
由等比数列{bn}公比为q,b4=b1•q3=8,
∴q3=8,q=2,
∴数列{bn}的通项公式bn=2n-1
(2)cn=an+bn=2n-1+2n-1
数列{cn}的前n项和Sn=$\frac{(1+2n-1)×n}{2}$+$\frac{1-{2}^{n}}{1-2}$,
=2n+n2-1,
数列{cn}的前n项和Sn=2n+n2-1.

点评 本题考查等差数列和等比数列通项公式及前n项和公式,考查数列的分组求和,考查计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.下列不等式组中,能表示图中阴影部分的是(  )
A.$\left\{\begin{array}{l}{y≥1}\\{2x-y+2≥0}\end{array}\right.$B.$\left\{\begin{array}{l}{y≥-1}\\{2x-y+2≤0}\end{array}\right.$
C.$\left\{\begin{array}{l}{x≤0}\\{y≥-1}\\{2x-y+2≤0}\end{array}\right.$D.$\left\{\begin{array}{l}{x≤0}\\{y≥-1}\\{2x-y+2≥0}\end{array}\right.$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设tan(α+β)=$\frac{3}{7}$,tan(β-$\frac{π}{4}$)=-$\frac{1}{3}$,则tan(α+$\frac{π}{4}$)的值是(  )
A.$\frac{2}{3}$B.$\frac{8}{9}$C.$\frac{1}{12}$D.$\frac{1}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列函数中为偶函数的是(  )
A.y=x+$\frac{1}{x}$B.y=x3C.y=$\sqrt{x}$D.y=|x|+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.(1)若f(x+1)=x2-2x+3,求f(x)的解析式.
(2)若f(x)为定义在R上的奇函数,当x<0时,f(x)=2x+1,求x>0时f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρsin(θ+$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$a,曲线C2的参数方程为$\left\{\begin{array}{l}{x=-1+cosθ}\\{y=-1+sinθ}\end{array}\right.$(θ为参数).
(Ⅰ)求C1的直角坐标方程;
(Ⅱ)当C1与C2有两个公共点时,求实数a取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数f(x)=$\left\{{\begin{array}{l}{x-3,(x≥4)}\\{f(x+3),(x<4)}\end{array}}$,则f(-10)=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.观察下列三角形数表,假设第n行的第二个数为an(n≥2,n∈N),
(1)依次写出第六行的所有6个数字;
(2)归纳出an+1与an的关系式,并利用递推关系式求出an的通项公式(可以不证明).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=$\left\{{\begin{array}{l}{3x-1,x<0}\\{{3^x},x>0}\end{array}}$,那么f(2)的值是(  )
A.9B.8C.7D.5

查看答案和解析>>

同步练习册答案