精英家教网 > 高中数学 > 题目详情
9.已知数列{an}中,a1=a>0,an+1=f(an)(n∈N*),其f(x)=$\frac{2x}{x+1}$.
(1)求a2,a3,a4
(2)猜想数列{an}的一个通项公式.

分析 (1)由a1=a,a2=f(a1)=$\frac{2a}{a+1}$,a3=f(a2)=$\frac{4a}{3a+1}$,${a_4}=f({a_3})=\frac{8a}{7a+1}$;
(2)由(1)可知,根据前n项猜想数列{an}的一个通项公式:${a_n}=\frac{{{2^{n-1}}a}}{{({{2^{n-1}}-1})a+1}}({n∈{N^*}})$.

解答 解:(1)a1=a,a2=f(a1)=$\frac{2a}{a+1}$,
a3=f(a2)=$\frac{4a}{3a+1}$,
${a_4}=f({a_3})=\frac{8a}{7a+1}$;…6分
(2)根据(1)猜想{an}的一个通项公式:${a_n}=\frac{{{2^{n-1}}a}}{{({{2^{n-1}}-1})a+1}}({n∈{N^*}})$.

点评 本题考查数列与函数的应用,利用函数的解析求函数的通项公式,考查分析问题及解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.双曲线$\frac{x^2}{4}-{y^2}=1$的两渐近线与圆x2+y2-2ax+1=0没有公共点,则实数a的取值范围是$(-\frac{{\sqrt{5}}}{2},-1)∪(1,\frac{{\sqrt{5}}}{2})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知数列{an}是等差数列,数列{bn}是等比数列,公比为q,数列{cn}中,cn=anbn,Sn是数列{cn}的前n项和,若Sm=7,S2m=-201(m为正偶数),则S4m的值为(  )
A.-1601B.-1801C.-2001D.-2201

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知点F1,F2分别是双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左、右焦点,过F1且垂直于x轴的直线与双曲线交于(-c,±$\frac{{b}^{2}}{a}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在正方体ABCD-A1B1C1D1中,E,F分别是线段A1B1,B1C1上的不与端点重合的动点,如果B1E=B1F,有下面四个结论:①EF⊥AA1;②EF∥平面ABCD;③EF与AC异面;④AC∥面EFB.其中一定正确的有(  )
A.①②③B.②③④C.①②④D.①③④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数$f(x)=\frac{1}{2}{x^2}-(2a+2)x+(2a+1)lnx$,若曲线y=f(x)在点(2,f(2))处的切线的斜率小于零,
(1)求函数f(x)的单调增区间;
(2)对任意x1,x2∈[0,2](x1≠x2),$a∈[{\frac{3}{2},\frac{5}{2}}]$,恒有$|{f({x_1})-f({x_2})}|<λ|{\frac{1}{x_1}-\frac{1}{x_2}}|$成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知动点M到点A(2,0)的距离是它到点B(8,0)的距离的一半.
(1)动点M的轨迹方程;
(2)求与点M的轨迹相切,且在x轴、y轴上的截距相等的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$,其中向量$\overrightarrow{a}$=(2cos x,1),$\overrightarrow{b}$=(cos x,$\sqrt{3}$sin 2x),x∈R.
(1)若函数f(x)=1-$\sqrt{3}$,且x∈[-$\frac{π}{3}$,$\frac{π}{3}$],求x;
(2)求函数y=f(x)的单调增区间,并在给出的坐标系中画出y=f(x)在[0,π]上的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在△ABC中,a,b,c分别是角A,B,C所对的边,已知a+b=10,cosC是方程所2x2-3x-2=0的一个根,求△ABC周长的最小(  )
A.10+5$\sqrt{3}$B.15C.10+2$\sqrt{3}$D.20

查看答案和解析>>

同步练习册答案