18£®É躯Êýf£¨x£©=$\overrightarrow{a}$•$\overrightarrow{b}$£¬ÆäÖÐÏòÁ¿$\overrightarrow{a}$=£¨2cos x£¬1£©£¬$\overrightarrow{b}$=£¨cos x£¬$\sqrt{3}$sin 2x£©£¬x¡ÊR£®
£¨1£©Èôº¯Êýf£¨x£©=1-$\sqrt{3}$£¬ÇÒx¡Ê[-$\frac{¦Ð}{3}$£¬$\frac{¦Ð}{3}$]£¬Çóx£»
£¨2£©Çóº¯Êýy=f£¨x£©µÄµ¥µ÷ÔöÇø¼ä£¬²¢ÔÚ¸ø³öµÄ×ø±êϵÖл­³öy=f£¨x£©ÔÚ[0£¬¦Ð]ÉϵÄͼÏó£®

·ÖÎö £¨1£©ÀûÓÃÏòÁ¿µÄÊýÁ¿»ýÒÔ¼°Á½½ÇºÍÓë²îµÄÈý½Çº¯Êý»¯¼òº¯ÊýΪһ¸ö½ÇµÄÒ»¸öÈý½Çº¯ÊýµÄÐÎʽ£¬Çó³öÏàλµÄ·¶Î§£¬ÀûÓÃÕýÏÒº¯ÊýµÄÓнçÐÔÇó½â¼´¿É£®
£¨2£©ÀûÓÃÕýÏÒº¯ÊýµÄµ¥µ÷Çø¼äÇó½âº¯ÊýµÄµ¥µ÷Çø¼ä£¬È»ºóÀûÓÃÎåµã·¨»­³öº¯ÊýµÄͼÏó£®

½â´ð ½â£º£¨1£©º¯Êýf£¨x£©=$\overrightarrow{a}$•$\overrightarrow{b}$£¬ÆäÖÐÏòÁ¿$\overrightarrow{a}$=£¨2cos x£¬1£©£¬$\overrightarrow{b}$=£¨cos x£¬$\sqrt{3}$sin 2x£©£¬
µÃf£¨x£©=2cos2x+$\sqrt{3}$sin 2x
=1+cos 2x+$\sqrt{3}$sin 2x=2sin£¨2x+$\frac{¦Ð}{6}$£©+1£®
ÓÉ2sin£¨2x+$\frac{¦Ð}{6}$£©+1=1-$\sqrt{3}$µÃsin£¨2x+$\frac{¦Ð}{6}$£©=-$\frac{\sqrt{3}}{2}$£®
¡ß-$\frac{¦Ð}{3}$¡Üx¡Ü$\frac{¦Ð}{3}$£¬¡à-$\frac{¦Ð}{2}$¡Ü2x+$\frac{¦Ð}{6}$¡Ü$\frac{5¦Ð}{6}$£¬
¡à2x+$\frac{¦Ð}{6}$=-$\frac{¦Ð}{3}$£¬¼´x=-$\frac{¦Ð}{4}$£®
£¨2£©-$\frac{¦Ð}{2}$+2k¦Ð¡Ü2x+$\frac{¦Ð}{6}$¡Ü$\frac{¦Ð}{2}$+2k¦Ð£¨k¡ÊZ£©£¬¼´-$\frac{¦Ð}{3}$+k¦Ð¡Üx¡Ü$\frac{¦Ð}{6}$+k¦Ð£¨k¡ÊZ£©
µÃº¯Êýµ¥µ÷ÔöÇø¼äΪ[-$\frac{¦Ð}{3}$+k¦Ð£¬$\frac{¦Ð}{6}$+k¦Ð]£¨k¡ÊZ£©£®

x0$\frac{¦Ð}{6}$$\frac{¦Ð}{3}$$\frac{¦Ð}{2}$$\frac{2¦Ð}{3}$$\frac{5¦Ð}{6}$¦Ð
y2320-102

µãÆÀ ±¾Ì⿼²éÈý½Çº¯Êý»¯¼òÇóÖµ£¬º¯ÊýµÄͼÏóµÄ»­·¨£¬ÕýÏÒº¯ÊýµÄµ¥µ÷ÐÔµÄÇ󷨣¬¿¼²é¼ÆËãÄÜÁ¦£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÒÑÖªa£¬b£¬c¶¼ÊÇÕýÕûÊý£¬a+b+c=6£¬Ôòa=1µÄ¸ÅÂÊΪ£¨¡¡¡¡£©
A£®$\frac{1}{4}$B£®$\frac{2}{5}$C£®$\frac{1}{3}$D£®$\frac{2}{7}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖªÊýÁÐ{an}ÖУ¬a1=a£¾0£¬an+1=f£¨an£©£¨n¡ÊN*£©£¬Æäf£¨x£©=$\frac{2x}{x+1}$£®
£¨1£©Çóa2£¬a3£¬a4£»
£¨2£©²ÂÏëÊýÁÐ{an}µÄÒ»¸öͨÏʽ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®Èçͼ£¨1£©£¬¡÷ABCÖУ¬¡ÏABC=90¡ã£¬$AB=BC=2\sqrt{2}$£¬MΪACÖе㣬ÏÖ½«¡÷ABMÑØ×ÅBM±ßÕÛÆð£¬Èçͼ£¨2£©Ëùʾ£®

£¨¢ñ£©ÇóÖ¤£ºÆ½ÃæBCM¡ÍÆ½ÃæACM£®
£¨¢ò£©ÈôÆ½ÃæABM¡ÍÆ½ÃæBCM£¬ÇóÈýÀâ×¶B-ACMÍâ½ÓÇòµÄÖ±¾¶£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®ÊµÊýx£¬yÂú×ãÔ¼ÊøÌõ¼þ$\left\{\begin{array}{l}{x-3y+6¡Ý0}\\{x-y¡Ü0}\end{array}\right.$£¬µ±a£¾0£¬b£¾0ʱ£¬z=ax+byµÄ×î´óֵΪ3£¬Ôò$\frac{1}{a}$+$\frac{2}{b}$µÄ×îСֵΪ£¨¡¡¡¡£©
A£®5B£®3+2$\sqrt{2}$C£®3+$\sqrt{2}$D£®2+2$\sqrt{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®ÎªÁ˲âijËþABµÄ¸ß¶È£¬ÔÚÒ»´±ÓëËþABÏà¾à30Ã×µÄÂ¥¶¥´¦²âµÃËþ¶¥µÄÑö½ÇΪ30¡ã£¬Ëþ»ùµÄ¸©½ÇΪ45¡ã£¬ÔòËþABµÄ¸ß¶ÈΪ30£¨1+$\frac{\sqrt{3}}{3}$£©Ã×£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®¡÷ABCÖУ¬sinA£ºsinB£ºsinC=$\sqrt{2}$£º1£º2£¬ÔòcosA=$\frac{3}{4}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®¶ÔÓÚº¯Êýf£¨x£©£¬ÈôÈθøÊµÊýa¡¢b¡¢c£¬f£¨a£©£¬f£¨b£©£¬f£¨c£©ÎªÄ³Ò»Èý½ÇÐÎÈý±ß³¤£¬Ôò³Æf£¨x£©Îª¡°¿É¹¹ÔìÈý½ÇÐκ¯Êý¡±£®ÒÑÖªº¯Êýf£¨x£©=$\frac{{{2^x}+t}}{{{2^x}+1}}$ÊÇ¡°¿É¹¹ÔìÈý½ÇÐκ¯Êý¡±£¬ÔòʵÊýtµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®[${\frac{1}{2}$£¬2]B£®[0£¬1]C£®[1£¬2]D£®[0£¬+¡Þ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®n¡ÊN*£¬${C}_{n}^{0}$+3${C}_{n}^{1}$+¡­+£¨2n+1£©$C_n^n$=£¨n+1£©2n£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸