精英家教网 > 高中数学 > 题目详情
7.对于函数f(x),若任给实数a、b、c,f(a),f(b),f(c)为某一三角形三边长,则称f(x)为“可构造三角形函数”.已知函数f(x)=$\frac{{{2^x}+t}}{{{2^x}+1}}$是“可构造三角形函数”,则实数t的取值范围是(  )
A.[${\frac{1}{2}$,2]B.[0,1]C.[1,2]D.[0,+∞)

分析 因对任意实数a、b、c,都存在以f(a)、f(b)、f(c)为三边长的三角形,则f(a)+f(b)>f(c)恒成立,将f(x)解析式用分离常数法变形,由均值不等式可得分母的取值范围,整个式子的取值范围由t-1的符号决定,故分为三类讨论,根据函数的单调性求出函数的值域,然后讨论k转化为f(a)+f(b)的最小值与f(c)的最大值的不等式,进而求出实数k 的取值范围.

解答 解:由题意可得f(a)+f(b)>f(c)对于?a,b,c∈R都恒成立,
由于f(x)=$\frac{{{2^x}+t}}{{{2^x}+1}}$=1+$\frac{t-1}{{2}^{x}+1}$,
①当t-1=0,f(x)=1,此时,f(a),f(b),f(c)都为1,构成一个等边三角形的三边长,
满足条件.
②当t-1>0,f(x)在R上是减函数,1<f(a)<1+t-1=t,
同理1<f(b)<t,1<f(c)<t,
由f(a)+f(b)>f(c),可得 2≥t,解得1<t≤2.
③当t-1<0,f(x)在R上是增函数,t<f(a)<1,
同理t<f(b)<1,t<f(c)<1,
由f(a)+f(b)>f(c),可得 2t≥1,解得1>t≥$\frac{1}{2}$.
综上可得,$\frac{1}{2}$≤t≤2,
故实数t的取值范围是[$\frac{1}{2}$,2],
故选A:.

点评 本题主要考查了求参数的取值范围,以及构成三角形的条件和利用函数的单调性求函数的值域,同时考查了分类讨论的思想,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知点F1,F2分别是双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左、右焦点,过F1且垂直于x轴的直线与双曲线交于(-c,±$\frac{{b}^{2}}{a}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$,其中向量$\overrightarrow{a}$=(2cos x,1),$\overrightarrow{b}$=(cos x,$\sqrt{3}$sin 2x),x∈R.
(1)若函数f(x)=1-$\sqrt{3}$,且x∈[-$\frac{π}{3}$,$\frac{π}{3}$],求x;
(2)求函数y=f(x)的单调增区间,并在给出的坐标系中画出y=f(x)在[0,π]上的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在△ABC中,2sinA+$\sqrt{3}$cosB=3,2cosA+$\sqrt{3}$sinB=2,则角C=(  )
A.$\frac{π}{2}$B.$\frac{2π}{3}$C.$\frac{π}{3}$或$\frac{2π}{3}$D.$\frac{π}{6}$或$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.(1)已知tanθ=-$\frac{3}{4}$,求2+sinθcosθ-cos2θ的值.
(2)设f(θ)=$\frac{{2{{cos}^3}θ+{{sin}^2}(2π-θ)+cos(-θ)-3}}{{2+2{{cos}^2}(π+θ)+cos(2π-θ)}}$,求f($\frac{π}{3}$).
(3)函数y=cos2x-3cosx+2的最小值是多少.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.对于函数f(x)=(x2-2x+2)ex-$\frac{e}{3}{x^3}$的下列描述,错误的是(  )
A.无最大值
B.极大值为2
C.极小值为$\frac{2e}{3}$
D.函数g(x)=f(x)-2的图象与x轴只有两个交点

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在△ABC中,a,b,c分别是角A,B,C所对的边,已知a+b=10,cosC是方程所2x2-3x-2=0的一个根,求△ABC周长的最小(  )
A.10+5$\sqrt{3}$B.15C.10+2$\sqrt{3}$D.20

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,E是PC的中点,求证:
(Ⅰ)PA∥平面EDB
(Ⅱ)AD⊥PC.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若正数x,y满足x+y=1,则xy+$\frac{1}{xy}$的取值范围$[\frac{17}{4},+∞)$.

查看答案和解析>>

同步练习册答案