【题目】已知椭圆
:
的离心率为
,且以两焦点为直径的圆的内接正方形面积为2.
(1)求椭圆
的标准方程;
(2)若直线
:
与椭圆
相交于
,
两点,在
轴上是否存在点
,使直线
与
的斜率之和
为定值?若存在,求出点
坐标及该定值,若不存在,试说明理由.
科目:高中数学 来源: 题型:
【题目】如图是一几何体的平面展开图,其中ABCD为正方形,E,F分别为PA,PD的中点,
在此几何体中,给出下面四个结论:
①直线BE与直线CF异面; ②直线BE与直线AF异面;
③直线EF∥平面PBC; ④平面BCE⊥平面PAD.
其中正确的有( )
![]()
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在底面是菱形的四棱锥
中,
平面
,
,点
分别为
的中点,设直线
与平面
交于点
.
![]()
(1)已知平面
平面
,求证:
.
(2)求直线
与平面
所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知棱长为1的正方体ABCD-A1B1C1D1中,E,F,M分别是线段AB、AD、AA1的中点,又P、Q分别在线段A1B1、A1D1上,且A1P=A1Q=x(0<x<1).设平面MEF∩平面MPQ
=l,现有下列结论:
![]()
①l∥平面ABCD;
②l⊥AC;
③直线l与平面BCC1B1不垂直;
④当x变化时,l不是定直线.
其中不成立的结论是________.(写出所有不成立结论的序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)是定义在R上的偶函数,且f(0)=0,当x>0时,
f(x)=
.
(1)求函数f(x)的解析式;
(2)解不等式f(x2-1)>-2.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为对考生的月考成绩进行分析,某地区随机抽查了
名考生的成绩,根据所得数据画了如下的样本频率分布直方图.
![]()
(1)求成绩在
的频率;
(2)根据频率分布直方图算出样本数据的中位数;
(3)为了分析成绩与班级、学校等方面的关系,必须按成绩再从这
人中用分层抽样方法抽取出
人作出进一步分析,则成绩在
的这段应抽多少人?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,已知曲线
的参数方程为
(
为参数),点
是曲线
上的一动点,以坐标原点为极点,
轴的正半轴为极轴建立极坐标系,直线
的方程为
.
(Ⅰ)求线段
的中点
的轨迹的极坐标方程;
(Ⅱ)求曲线
上的点到直线
的距离的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com