精英家教网 > 高中数学 > 题目详情
17.若O、A、B、C为空间四点,且向量$\overrightarrow{OA}$,$\overrightarrow{OB}$,$\overrightarrow{OC}$不能构成空间的一个基底,则(  )
A.$\overrightarrow{OA}$,$\overrightarrow{OB}$,$\overrightarrow{OC}$共线B.$\overrightarrow{OA}$,$\overrightarrow{OB}$共线C.$\overrightarrow{OB}$,$\overrightarrow{OC}$共线D.O,A,B,C四点共面

分析 向量$\overrightarrow{OA}$,$\overrightarrow{OB}$,$\overrightarrow{OC}$不能构成空间的一个基底,可得:向量$\overrightarrow{OA}$,$\overrightarrow{OB}$,$\overrightarrow{OC}$共面,即可得出.

解答 解:∵向量$\overrightarrow{OA}$,$\overrightarrow{OB}$,$\overrightarrow{OC}$不能构成空间的一个基底,
∴向量$\overrightarrow{OA}$,$\overrightarrow{OB}$,$\overrightarrow{OC}$共面,
因此O,A,B,C四点共面,
故选:D.

点评 本题考查了空间向量基底、向量共线与共面定理,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.屋檐每隔一定时间滴下一滴水,当第五滴正欲滴下时,第一滴刚好落到地面,而第三滴与第二滴分别位于高1m的窗子的上、下沿,如图所示,g取10m/s2,问:
(1)此屋檐离地面多高?
(2)滴水的时间间隔是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知A,B是球O的球面上两点,∠AOB=60°,C为该球面上的动点,若三棱锥O-ABC体积的最大值为$18\sqrt{3}$,则球O的表面积为(  )
A.36πB.64πC.144πD.256π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在△ABC中,已知a=1,c=$\sqrt{3}$,B=$\frac{5π}{6}$,则b等于(  )
A.$\sqrt{7}$B.2$\sqrt{7}$C.3$\sqrt{7}$D.7

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在△ABC中,BC=2,AB=3,B=$\frac{π}{3}$,△ABC的面积是$\frac{{3\sqrt{3}}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设F为抛物线y2=2px(p>0)的焦点,点A、B、C在此抛物线上,若$\overrightarrow{FA}$+$\overrightarrow{FB}$+$\overrightarrow{FC}$=$\overrightarrow 0$,则|$\overrightarrow{FA}$|+|$\overrightarrow{FB}$|+|$\overrightarrow{FC}$|=3p.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若{an}为等差数列,Sn是其前n项和,且S11=$\frac{11}{3}$π,{bn}为等比数列,b5•b7=$\frac{π^2}{4}$,则tan(a6+b6)的值为 (  )
A.$-\sqrt{3}$B.$±\sqrt{3}$C.$-\frac{{\sqrt{3}}}{3}$D.$±\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.掷三枚硬币,至少出现两个正面的概率为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若向量$\overrightarrow a$=(1,1),$\overrightarrow b$=(2,-1),$\overrightarrow c$=(-1,2),则$\overrightarrow c$等于(  )
A.$\overrightarrow a$+$\overrightarrow b$B.$\overrightarrow a$-2$\overrightarrow b$C.$\overrightarrow a$-$\overrightarrow b$D.-$\overrightarrow a$+$\overrightarrow b$

查看答案和解析>>

同步练习册答案